[image: image1.emf]

Technical Template Guide
SF-Smart Tags
3D3.COM Pty Ltd
	You can modify existing templates within ShopFactory, using Customize Design mode with point and click ease.

These Development guidelines define how templates can be created and customized on code level for website designers.

This guide requires at least a basic understanding of HTML and CSS coding in text editors.

WARNING:
Do not use HTML or style sheet editors which reformat or add their own code.
You will break the templates and ShopFactory will not work with them.
Table of Contents

7How SF creates new shops

7Advanced themes introduction

8How themes and templates work

9Website Lay-Out areas

9Website Container

9Header

9Sidebar

10Website Footer

10Content

10List of Website elements

11Website HTML areas

12The Content Area

12List of Page (content area) elements

13Product Loops

13List of Product elements

13Loop and product page elements

14Product Page only elements

14Linkbox

15Page Footer

15The templates used by ShopFactory

16Where are the templates

17How to add a template to ShopFactory

17I can’t see my new template in ShopFactory

17How the templates work

17What’s in a Template folder

17Website

18Pages, Special Pages

18Product loops

18Products (More Details view, detailed view)

19Indexes

19Object fragments

19ShopFactory Template Presets

19Website presets

21Page Pre-sets

22Product presets

22Adjusting website dimensions with CSS

24Website Colours

24How to change Website colours

24Initial colour settings

24Changing colours

25Creating your own colour scheme

25Add more colours

25Remapping colours

25Text colours

25The colour mapping file mapping.xml

26Colours in the website.css file

26Design Images

26Transparent images

26What are design elements

28Page Templates

28Page HTML areas

28Product Loop Templates

28Products templates (More details page)

29Object fragments

29Existing Object fragments

29Login

29Search

29Minicart

29Switch Currency

29Switch Language (SwitchLang)

29Special Page Templates

30Build.ini files

30Alias.ini files

30Switching Website Themes

30Automatic image resizing when switching website themes

31The SF Smart-tags

31SF Namespace

31SF Elements

36Global colour mapping

37Default colour mapping list

39Website Html Components

39Enable page

39Page head title

39Layout master

39Site title

39Company image

40CompanyImage Attributes

40Site slogan

41Search

41Switch language

42Mini cart

43Index 1

44Switch currency

44Login

45Index 2

46Content

46Application logo

47Page HTML components

47Set banner-link image sizes

47Set page-link image sizes

47Breadcrumbs

48Multiple pages

48First page

48Last page

48Html code top

49Html code bottom

50Html code snippet area2

51Website HTML code snippet link box bottom

51Website HTML code snippet link box bottom

52WebSite HTML code top

52WebSite HTML code bottom

52Page HTML code snippet area 1

53Index code snippet top

53Index code snippet bottom

53WebSite footnote

53Banner top

55Page link box

56Page image

57Page title

58Shop discount message

58Page introduction

58Page description

58Navigation sub-levels

59Product loop

59Product footer

59Banner bottom

61Mulitple pages index top

61Mulitple pages index bottom

61Product Loop HTML Components

61Set cross promotion image sizes

61Set product image sizes

62Set page-link image sizes

62Product loop

63Product heading

63Product bookmark

63Product title

64Product price

64Method for more placement control

65Cart quantity and icons

66Base price

66Product number

67Product weight

67Product stock

68Product image

68Product options

69Product disount message

69Product international catalog number

69Product introduction

70Product description

70Product more details link

70Multiple page index

71Products template components

71Product detailed view

71Product heading

72Product bookmark

72Product title

72Product price

73Cart quantity and icons

74Base Price

75Product number

75Product weight

76Product stock

76Product image

77Product options

77Product disount message

78Product international catalog number

78Product introduction

78Product description

79Product detailed description

79Product highlights

79Product back button

79Product features

80Product cross promotions

82Index template HTML components

82toplevel.html Components

82Index1

83Index 2

85sublevels.html Components

85Sub page navigation loop

How SF creates new shops
ShopFactory uses the data entered by the user and combines it with a number of design templates to create a new shop project.

New shop Projects are usually created in:
C:\Documents and Settings\...\My Documents\ShopFactory 12 Websites

In this folder you will find a copy of the templates used as well as the Runtime folder, which contains the pages created by combining templates and data – i.e. the actual shop.
It also contains the database file containing the data entered by the user.
Back up this folder to safeguard your project.

Advanced themes introduction

Themes are designed to empower the users to customize a website a great deal with point and click ease internally. Templates must therefore be designed to work with Designer, unless you create a custom template which cannot be modified.
Advanced users may also externally change widths, heights, colours, images, spacing, fonts, etc. – provided the files have been set up correctly.

To make this possible, the code contains special SF tags, which allows the software to modify settings in the style sheets.

The software contains a sophisticated style sheet editor, which works based on the SF tags included in the various files which make up a website theme.

If you are familiar with XHTML, CSS and XML coding, this guide will allow you to further manipulate your website theme.
How themes and templates work
A ShopFactory Website theme is the lay-out design which defines the look of a website created with ShopFactory. It must support all the design elements and content elements supported by ShopFactory, as well as the customize design functions built into ShopFactory
A ShopFactory website theme splits a website into multiple areas. In these areas the different website elements are displayed. Some areas are optional; other areas always have to exist, and of course you can add additional areas for design purposes.
Different templates are used to create the content of the different website areas.

The Content area is also split into several regions – see The Content Area for details.

Some possible layouts are shown below, but of course Templates can be arranged in many different ways.
If an optional lay-out area is not used, the website elements must be added to other lay-out areas.

[image: image2.emf]

 [image: image3.emf]

[image: image4.emf]

 [image: image5.emf]

You can add extra areas around the content area to achieve specific design goals, such as completely enclosing the Content area on all sides.

Website Lay-Out areas

The available Website lay-out areas are: Background, Website Container, Header, Sidebar, Footer, and Content
The following areas are always required:
Always required: Background, Website Container, Content, Footer

The following areas are optional, although you would usually use at least one of the two areas:

Optional: Header, Sidebar,

All elements which can go into the Header and Sidebar are interchangeable; therefore you can exclude the Header or the Index, as long as you place all elements into other areas. As all Website elements can also be added to the Footer, only convention stops you from removing the Sidebar and the Header.
You can add extra areas for design purposes, for example to add design images to them.

Website Container

The Website container contains the complete website – it is like a parent frame around all other website lay-out areas.

Header

This area usually contains the following items:

· the website title

· a company logo

· the website slogan

· Index 1, which usually links to the special pages such as About us, Home, Basket

· The Search function

· The Log-in for members

· The language selection for multilingual shops

· Design images

However it should be understood that none of these items have to be placed into the header – the header does not even have to exist, as long as these components are placed in other lay-out areas.
Sidebar
This area usually contains Index 2. It also contains some Website HTML areas above and below the Index, which allows inserting additional code via ShopFactory.

This Sidebar area is optional, as long as the index is placed in another location, such as into the footer or header of the website. However you can of course also add all Header elements into the Sidebar to create a template without Header.
If the index is not on the left side, then the Website and Page HTML will open a new column on the left side to display the HTML website areas allocated to this region.
Website Footer

The footer usually contains the Website Footer and some design elements.

The website footer is added via the “Edit Website Footer” Function on the ShopFactory Central page and is shown on all Website pages. It can for example be used to add a Copyright Note to all pages.

However it is of course also possible to add other elements to the website footer, such as search, an index or any other website element.

Content

This area contains the actual website content, i.e. your product and content pages. It contains a number of additional areas, which are important to take into account – see The Content Area for more details.

List of Website elements

Below is a list of the Website elements, which are included in a Website Theme. They can be added to any Website Template area, as per your design requirements.

There are of course many other elements that you can add to a website, but they can only be added to the content areas as part of the page and product designs.
All Website Elements MUST be included in the Website Template, as they can be enabled or disabled via ShopFactory functions. The template is not allowed to control which website elements are displayed. This is done via the ShopFactory Interface.
	Website Elements
	Template

	Website title
	Added in ShopFactory Central

	Company logo
	Added in ShopFactory Central

	Website Slogan
	Added in ShopFactory Central

	Index 1
	Pre-Set with the Website Theme. Can be changed via Designer. Uses its own Template and inherits colours from Website Theme.

	Index 2
	Pre-Set with the Website Theme. Uses its own Template and inherits colours from Website Theme.

	Search function
	Can be turned on or off via
Settings | Miscellaneous

	Member-Log-in
	Requires Membership service to be enabled to be shown

	Language Selector for multilingual shops
	Is shown automatically when several shop languages are enabled

	Website HTML areas 1,2,3,4,5,6
	Added in ShopFactory Central. Will only be shown, if HTML code contains visible elements. See Website HTML areas

	Content area
	This is separate from the Website Theme and uses its own templates for the page style and the product loop. Colours are inherited from the website theme. See The Content Area

	Website Footer
	Added in ShopFactory Central

	Website Design elements
	Are defined by the Website Theme template. Design images be changed in Customize Design.

	Mini-Cart
	Displays the Total price of items in the shopping cart. Is selected via Designer.

	Shop wide Discount Message
	

	Shop wide Discount Percentage
	Optional – could clash with text not included by us

Website HTML areas

In these HTML areas ShopFactory places the content added with the “Edit Website HTML” function on the ShopFactory Central page. The text below indicates the positions of the different HTML areas.
These HTML areas can be used for display purposes such as adding a signup form as well as to place some code, such as Google Analytics or to show additional design elements.

Any code added to these areas will be added to all Website pages, but will only be visible if the HTML code includes visible elements.
 [image: image6.emf]

The Content Area

The content area is used to display the actual page content of pages. It is split into several regions. These regions will usually only be shown, if the shop builder has added appropriate content to ShopFactory or enabled the appropriate setting.

Different templates are used to create the different areas.

The content area is located within the Content div.
List of Page (content area) elements
This is a list of the elements on a page. The page also contains the product loop which shows the product details. See Product Loops and Products templates (More details) for a list of product elements.
All page elements MUST be included in a template and can not be removed. You can however change the way in which they are ordered and displayed and add design elements.
	Page Elements
	Explanation

	Details for Search engines
	Provided with the Enter Details for Search Engines functions in Page Properties. Creates Meta tags for each page.

	Page HTML code area 1,2,3,4
	Uses the Add HTML code function in Page properties.

	Banner link
	Uses the Add Banner Link function in Page Properties. Banner links can be inserted by the user on top or bottom of a page.

	Breadcrumbs
	Breadcrumbs are path of pages listed on top of a page, such as Page 1 > Child Page 1 to help with site navigation. They are turned on or off via Setting | Miscellaneous.

	Change Currency
	Usually integrated into the Bread crumbs. Allows changing the currency in the shop if multiple currencies are defined.

	Shopping cart
	This shopping cart is hidden until a product is added to it. Used only if the appropriate style is on. Style is selected in

Designer | Select MiniCart Style.

	Page Content
	Contains the Page Title, Page Description and Page Image (Image, Caption, Screen tip). The page title can be turned off in Page Properties in ShopFactory.

	Product Loop
	Contains the product information. See Product Loops

	Linkbox
	This contains links to other pages and products, as well as page HTML code areas

	Subpage navigation
	Contains the links to sub-pages. Is only visible if an appropriate navigation style is selected and sub-pages exist. Depending on the selected sub-page navigation style it is inserted either at the top of the page or after the introduction.

	Auto-Split Page counter
	ShopFactory automatically splits pages if they have more than the defines number of paragraphs or products (See Settings | Miscellaneous). This allows customers to navigate to the next pages.

	Footer
	Displays the content of the Page footer field.

Product Loops
All product elements can be included in a product loop or on the More Details page, the actual product page.

The structure is entirely up to the designer. A product loop can be as little as just the product image linking to the Product page or include all product elements.

If an element is not included in the product loop and the ShopFactory user enters value for this element – for example Feature List – then the Product Page is generated with this additional field on it. Otherwise the Product Page is not generated.

Product Pages are only created, if customers add content to product elements, which can not be displayed in the product loop.
The Product Page MUST support all product elements.

List of Product elements
Loop elements can be used in the loop and on the product page.
Loop and product page elements
	Product Elements Loop
	Explanation

	Product ID
	Allows ShopFactory to identify the product and places a bookmark on the page.

	Product Price
	As per name

	Discount Note
	As per name

	Price
	As per name

	Quantity Box
	As per name

	Quantity Unit
	

	Currency Symbol
	As per name. Is displayed together with the price always as ShopFactory controls the position of the symbol depending on the currency before or after the price.

	Discount Price
	As per name

	Special Discount Message
	As per name

	Base Price
	As per name

	Weight
	As per name

	Catalog Number
	As per name

	Product Image
	As per name

	Product Image Screen Tip
	As per name

	Product Image Caption
	As per name

	Multimedia Link
	As per name

	Add to Basket button
	There are multiple types available – Link to more details page only or actual Add to Cart button. See Add to Basket Button Options

	Product Headline
	As per name

	Product Description
	As per name

	Options and Choices
	As per name

	Cross Promotions
	Inserts a link box with links to related products and pages, when entered by user.

	Highlights
	As per name

	Longer Description
	As per name

	Features
	Table with Feature Name and Optional Description.

	Slideshow
	Now combined with larger image, but can be shown separately

	Product Discounts
	As per name

	Link to Shipping charges
	As per name

	Tax message
	As per name

	Stock Message
	As per name

	Stock Level
	As per name

	Manufacturer
	As per name

	Manufacturer Code
	As per name

	Product Code
	As per name

	Distributor Code
	As per name

	Price Code
	As per name

	EAN-UCC
	As per name

	Design images
	As per name

Product Page only elements
While these elements are part of a product, they are only shown on the actual product page(more details page) not as part of a product loop.
	Product page only
	Explanation

	Mata Name
	Allows defining a Meta Name for Search engine optimization.

	Meta Description
	Allows defining a Meta Description for Search engine optimization.

	Meta Keywords
	Allows defining Meta Keywords for Search engine optimization.

Linkbox

The link-box is displayed on the right side of the page – but only if content has been added to it with the “Link to other pages or products” via the ShopFactory.

Depending on the width of the content area, the width of the Linkbox and the image size in the Linkbox is automatically adjusted.

There are three sizes preset:

Small (S) = 160 px wide

Medium (M) = 196 px wide

Large (L) = 196 px wide

If you change from a Large website theme to a Small website theme, ShopFactory will automatically resize the width of the Link boxand the link image based on the presets of the page template. The website theme is set as part of the Website template.

The Linkbox is also shown if you add HTML code to the associated HTML areas; see Page HTML areas and Website HTML areas
[image: image7.emf]

Page Footer

Each Page also has a footer, which allows you load information to the bottom of the page, below the Product Loop. This is separate from the Website Footer
The templates used by ShopFactory
The different lay-out areas of ShopFactory are generated from different templates.
When you customize a website, you can decide how many of these templates you want to adjust.

· Index (Horizontal / Vertical)

· Pages

· Product Loops

· Products

· Special Pages

· Website
· Object Fragments

Where are the templates

If you have installed ShopFactory without changing the installation location, you will find the templates in the different folders located at

C:\Program Files\ShopFactory V9\ShopFactory\Templates
Here you will find a number of different folders. Each Folder contains template variations for the appropriate type of template.

The folder .templates does not contain any templates and should be ignored.
	Element
	Template

	Index (Horizontal / Vertical)
	Contains horizontal and vertical index templates in appropriately named folders. ShopFactory only allows the user to select the correct type of Index based on the folder – so it is important to put the right type of index into the right folder. Each Index has two style sheets. The style sheet used depends on which index the design is applied to – i.e. either Index 1 or Index 2

	Pages
	Contains a folder for each different page style available

	Product Loops
	Contains a folder for each different product loop available

	Products
	Contains a folder for each different product page style (more details) available

	Special Pages
	Contains a folder for each special page type. Each of these folders contains a number of folders with different styles for each of these special pages.

	Website
	Contains a folder for each different website theme.

	Object Fragments
	Contains a folder for each type of object fragment. Each folder contains at least one template style for the object.

	.Template
	NOT to be used

How to add a template to ShopFactory

Simply copy the templates you have required into the SFX themes folder in ShopFactory
I can’t see my new template in ShopFactory

You must click on the Refresh button in the template selection folder before you can see your renamed templates. Once refreshed they will continue to be visible.
How the templates work
Before you can edit templates, you should understand the different files involved. Following are the files and folders included in each template.
WARNING:
Do not use HTML or style sheet editors which reformat or add their own code.
You will break the templates and ShopFactory will not work with them.

What’s in a Template folder

Each Template is a parent containing a number of files and other folders as follows. The green background in the tables below denotes the main template files in a folder.
Not all files in Template folders can be edited. Some are used by ShopFactory to function correctly. These files are required, but should not be changed. The have a RED background in the following tables.
Website
	Name
	What it does

	media (folder) (optional)
	superseded – replaced by defining images in the Build.ini file.

	parsLang (folder)
	Contains the HTML template for the Website Design.

	styles (folder)
	Contains the CSS files for the website Template and the Indexes

	mapping.xml
	This defines the colours, colour mappings and fonts assigned to the template. This file is best edited by changing colours and fonts with ShopFactory Customize Design

	preview.gif
	A small preview image which is displayed in ShopFactory to allow selecting the Template

	build.ini
	Defines which files have to be copied to the Project folder and which ones have to be converted. You must understand how this works. See Build.ini files for more details.

Pages, Special Pages
	Name
	What it does

	preview.gif
	A small preview image which is displayed in ShopFactory to allow selecting the Template

	page.html
	The HTML template for the page design.

	stylesheet.css
	The CSS file for the html page template

	prices.js

	Required by ShopFactory – ignore, but must be kept

	prices.js
.CDB
	Required by ShopFactory – ignore, but must be kept

	build.ini
	Defines which files have to be copied to the Project folder and which ones have to be converted. You must understand how this works. See Build.ini files for more details.

Product loops

	Name
	What it does

	productloop.html
	The HTML template for the product loop design.

	stylesheet.css
	The CSS file for the product loop template

	preview_pa.gif
	A small preview image for the look of the template as paragraph only, displayed in ShopFactory to allow selecting the template

	preview_pr.gif
	A small preview image for the look of the template as product, displayed in ShopFactory to allow selecting the template

	build.ini
	Defines which files have to be copied to the Project folder and which ones have to be converted. You must understand how this works. See Build.ini files for more details.

	productloop_html.CDB
	Required by ShopFactory – ignore, but must be kept

Products (More Details view, detailed view)

	Name
	What it does

	preview.gif
	A small preview image which is displayed in ShopFactory to allow selecting the Template

	product.html
	The HTML template for the product page design.

	stylesheet.css
	The CSS file for the product page template

	alias.ini
	Advanced users only - allows creating new conditions

	build.ini
	Defines which files have to be copied to the Project folder and which ones have to be converted. You must understand how this works. See Build.ini files for more details.

Indexes

Indexes are sorted by horizontal or vertical. ShopFactory uses this distinction to allow users to only select appropriate index templates. This way you can not accidentally select a horizontal template for a vertical space.

	Name
	What it does

	preview.gif
	A small preview image which is displayed in ShopFactory to allow selecting the Template

	build.ini
	Defines which files have to be copied to the Project folder and which ones have to be converted. You must understand how this works. See Build.ini files for more details.

	styles
	Contains the CSS files for the index.

	sublevels.html
	The template to display the indexes for child pages

	toplevel.html
	The main index template

Object fragments

	Name
	What it does

	objectfragment.html
	The HTML template for the design.

	preview.gif
	A small preview image which is displayed in ShopFactory to allow selecting the Template. Not all fragment types have a preview image, as currently not all can be selected via ShopFactory

	build.ini
	Defines which files have to be copied to the Project folder and which ones have to be converted. You must understand how this works. See Build.ini files for more details.

ShopFactory Template Presets

Presets tell ShopFactory image sizes, template combinations and other details. They also influence the way ShopFactory behaves when a user interacts with a template via selection dialogs or the Customize Design function.

Presets can be found in the various templates. Some examples are listed below.
By changing the presets you will affect how a shop will behave, when it is either created with or converted to this website theme or page or product style.

Website presets

Example – Defining the company image size
The following preset tells ShopFactory that this Website theme supports a company logo with the maximum size of 784x80 pixels, but that the recommended size should be 196x80 pixels.
ShopFactory uses this information to automatically resize any company image selected by the user to the recommended image size.

However if users choose to override the recommended image size, they will not be able to go beyond the maximum size permitted by the designer. This prevents that ShopFactory users can break the template.
It requires however that the designer selects accurate presets.

<sf:macro object="CompanyImage" recwidth="196" recheight="80" maxwidth="784" maxheight="80" />
Example pre-setting an object fragment template
The following preset ensures that the template uses the code fragment OFA1 to create the log-in function displayed on the page.
By creating a new log-in fragment and pointing the website template to it, the Designer can change the look of the log-in and pre-set it, so this fragment will always be chosen for this template.
Of course the fragment must be available on the computer of the user.

<!-- This element is available within the 'Object fragment' folder-->
<!-- BEGIN: Login -->
<sf:macro object="Start_DivLogin" />
<sf:macro object="LoadLogin" design="OFA1" />
<sf:macro object="End_DivLogin" />
<!-- END: Login -->
Example pre-setting the index style to be used and its values
The following preset calls in the index design VSE_4. It defines the index orientation as Horizontal, so if ShopFactory users want to change the Index style, they will only be able to select horizontal styles.

showhomelink=”true” means the Index will include a link to the home page.
showlinkimagesublevels="false" means the Link image of the page or product will not be shown in the Sub-Page navigation levels. This can be changed by the user in ShopFactory.
showlinkimagetoplevel="false" means the Link image of the page or product will not be shown in the main navigation level. This can be changed by the user in ShopFactory.
<!-- Start Index1 -->
<sf:macro object="Start_DivIndex1" class="GC2" />
<sf:macro object="LoadIndex1" design="VSE_4" orientation="Horizontal" scroll="976" showhomelink="true" showlinkimagesublevels="false" showlinkimagetoplevel="false" />
<sf:macro object="End_DivIndex1" />
<!-- End Index1 -->
Example presetting the page styles to be used
This following preset tells ShopFactory which templates to use for the content area of the website theme selected.
Based on this preset the Shop about to be created will use the page template PAAI_2, the product loop template PRDV_2, the page template PAAi_2 for the home or welcome page, the product Style PRDV_2 on the home page and the product page which displays the complete product details PDDV_1.
While in this example the
<!-- Content -->
<sf:macro object="Start_DivContent" class="GC22 ContentBody EqualHeight" />
<sf:macro object="LoadContent" detailedproductdesign="PDDV_1" pagedesign="PAAI_2" productdesign="PRDV_2" welcomepagedesign="PAAI_2" welcomeproductdesign="PRDV_2" />

<sf:macro object="End_DivContent" />

<!-- End Content -->
Page Pre-sets
The following presets tell ShopFactory how to deal with images on a page.
ShopFactory has three general widths for the Content Area, Large (L), Medium (M) and Small (S).

As a generic page style may be called into templates of varying width, ShopFactory must know what to do, depending on the available space.

ShopFactory also has to deal with users switching from a wide website style to a narrow website style.

 The following pre-sets help with this by defining the image sizes for the different content width areas used in the templates.

You may want to change for example the maximum width settings for images (maxwidth), to suit your new design. However usually you should not have to touch these values.
When changing these values you have to allow for the width of the Linkbox, the width of the text and the width of the image, unless your design does not have these elements next to each other.

<!-- BEGIN: Page parameters -->

<!-- begin: do not use tabs to indent the attributes -->

<sf:macro object="SetBannerLinkImageSizes"

 maxwidth_L="950" maxheight_L="300"

 maxwidth_M="750" maxheight_M="300"

 maxwidth_S="560" maxheight_S="300"

/>

<sf:macro object="SetPageLinkBoxImageSizes"

 recwidth_L="184" recheight_L="184"

 recwidth_M="184" recheight_M="184"

 recwidth_S="148" recheight_S="148"

 maxwidth_L="184" maxheight_L="400"

 maxwidth_M="184" maxheight_M="400"

 maxwidth_S="148" maxheight_S="400"

/>

<sf:macro object="SetPageImageSizes"

 recwidth_L="350" recheight_L="500"

 recwidth_M="300" recheight_M="400"

 recwidth_S="200" recheight_S="300"

 maxwidth_L="540" maxheight_L="1000"

 maxwidth_M="400" maxheight_M="1000"

 maxwidth_S="250" maxheight_S="1000"

/>

<sf:macro object="SetSizes" name="SideBar_R"

 width_L="196"

 width_M="196"

 width_S="160"

/>

<!-- end: do not use tabs to indent the attributes -->

<!-- END: Page parameters -->

There are also presets for the width of the Linkbox and for Banner images.
Product presets
Product pre-sets are also mainly concerned with image sizes.

You may want to change for example the maximum width settings for images (maxwidth), to suit your new design.

<!-- begin: do not use tabs to indent the attributes -->
<sf:macro object="SetProductCrossPromotionImageSizes"
 recwidth_L="165" recheight_L="165"
 recwidth_M="110" recheight_M="110"
 recwidth_S="55" recheight_S="55"
/>
<sf:macro object="SetProductImageSizes"
 recwidth_L="180" recheight_L="180"
 recwidth_M="130" recheight_M="130"
 recwidth_S="80" recheight_S="80"
 maxwidth_L="600" maxheight_L="600"
 maxwidth_M="400" maxheight_M="400"
 maxwidth_S="200" maxheight_S="200"
/>
<!-- end: do not use tabs to indent the attributes -->

Adjusting website dimensions with CSS
In most cases you will be able to create a new theme by changing the design images and adjusting the size of the areas assigned to header, footer, sidebar and content to cater for the new image sizes. It is not very difficult to change them.

This is one of the tasks you can perform in the website.css template file.
C:\Program Files\Name of software\Templates\Website\NewTheme\styles\website.css

WARNING:

Do not use HTML or style sheet editors which reformat or add their own code.
You will break the templates and ShopFactory will not work with them.

Look for the following code in the website.css file:
Blue values relate to adjusting width. Green values must result in the blue website width when added together. Red values relate to height
Alterations will modify the entire website.

/* ** BEGIN: Website width and height ** */

/* Normally set to 770px (Fits on 800 x 600 screens) or 980px (Fits on 1024 x 768 screens). Larger or smaller sizes are possible, with sacrifice to legability of website text and loading times. */

#WebSite, #WebSiteHeader, #WebSiteContent, #WebSiteFooter, #WebSiteContent, #DesignImage1, #AppLogo, .WebSiteFootnote {width:980px;}

/* Sum of the following elements width must equal WebSite width. Check other values further down this file for other elements which my be affected by these settings. */

#SideBar_L{width:196px;} #Content {width:784px;}

/* Minimum website height */

#WebSite, #SideBar_L, #WebSiteContent, #Content {min-height:415px;}

/* ** END: Website width and height ** */

Once modified, save the website.css file.

In a resized website theme design images or flash elements will likely no longer fit and have to be relaced. You can quickly do this in ShopFactory’s Customize Designe mode. Flash elements will have also have to replaced, as they are usually designed for specific area sizes.
Website Colours
ShopFactory uses a sophisticated colour management system which allows adjusting the colours via customize design with point and click ease.

The colour system is controlled via CSS style sheets, based on Global Colours, CSS classes and a colour mapping file, which you should never have to touch.
Colours are assigned globally – that is on a website wide level.
How to change Website colours

	[image: image8.emf]

	The ShopFactory designer makes changing colours easy. You can easily change colours, switch colour schemes or remap colours to create a new look.

To do this simply select the template you want to change and switch to Customize Design Mode.

On the left side of the Designer you find the colour tools which make changing colours easy.

Initial colour settings

ShopFactory Templates usually come with 8 colours predefined.

Colour 1 is the main website colour. Changing this colour will also change all the schemes provided to match this colour. It is the colour around which all other colours should be arranged.

The colours 1-3 are the Website colours. They are ordered from dark to light, that is colour 1 is the darkest colour, colour 2 is a medium colour and colour 3 is the lightest colour. Depending on the design the three colours could have the same level of brightness, though.

The colours 4-6 are the content area colours. They are also ordered from dark to light, that is colour 4 is the darkest colour, colour 5 is a medium colour and colour 6 is the lightest colour.

Colour 7 is always white and 8 is always black.

Additional highlight colours can be assigned to the colours 9-13.

Especially when creating new templates these settings should be maintained, as this ensures that the Colour schemes supplied with ShopFactory can be always be applied to a template without breaking it.

Changing colours

To change a colour simply click on the Colour button under Website colours and select a new colour. To get a precise colour enter the appropriate HTML colour value.
All areas which have this colour assigned to them will now automatically change to the new colour.

You can also change all colours at once by selecting a different colour scheme from the available selections.

Alternatively you can scroll to the bottom of the schemes and open a previously saved colour scheme.

Note that colours may sometimes be covered by images, so not all areas will always change as expected.

Creating your own colour scheme

To create your own colour scheme simply change the colours 1-6. Keep in mind that always go lighter from left to right (See Initial colour settings).
Add more colours

If you need more colours, add them to colours 9-13 as highlight colours. To add a colour click on the Colour button under Website colours and chose the colour from the colour selector or enter a HTML colour value.
New colours should be highlight colours only, as the main website and content area colours must be assigned to colours 1-6, and the numbers 7 and 8 are taken up by white and black.
Remapping colours

When creating a template you may sometimes want to change where a colour is placed. To do this simply click on the area in the template which contains the colour. A menu will open up. Select the applicable Edit colour option in the menu, and pick a new colour from the Colour menu coming up.
This does not actually change the colour itself – it only assigns a different colour to this area, it remaps it. If you want a completely new colour to be assigned to this area, you must first add more colours.
Text colours

To make sure that text is always readable, most text items are set to Autotext colour. You can change this for specific text by clicking on the text and assigning a colour to it.
If Autotext is enabled for text, then ShopFactory will switch between the dark and light text colours, depending on the background colour of the text area.

To change the dark and light text colours, click on the Text colour button below the Website colours and colour schemes.
The colour mapping file mapping.xml
You should NEVER touch this file unless you want to do some very sophisticated remapping which you can not achieve via the CSS style sheets or Customize Design view. This is extremely unlikely, as you can easily remap colours with the ShopFactory Designer.

This file defines the initial global colours and fonts used in a shop. It is part of the website theme template folder.
See also Global colour mapping.

Colours in the website.css file
At the top of the website.css file the global colours for the website are defined. These are based on the settings in the mapping.xml file.
The colours are then used in the different classes assigned to the website elements used.

The best way to change colour settings is via the ShopFactory Designer. Make the changes as required, then save the adjusted website template as a new website theme.
You should NEVER touch these settings unless you want to make some very sophisticated changes which you can not achieve via Customize Design view. This is extremely unlikely, as you can easily remap and change colours with the ShopFactory Designer.

See also Global colour mapping.

Design Images

Design images are images embedded on the website and on pages to define the look of the website. You can easily replace them in Designer.
ShopFactory uses the size of the div which contains the design image to make sure any new image selected is either smaller or the same size. Design images therefore have a fixed image size – when selected with ShopFactory, they will have to cropped or resized by the user to fit the appropriate area.
Design images are assigned as background image of their container.

Transparent images

In some cases ShopFactory converts png design images to flash elements.

This helps overcome the problem that transparent png images have a large file size, which would negatively affect the speed of the website.
What are design elements

Design elements defines a given areas which may contain artwork color borders or text-decoration properties, which can be controlled from inside the software.

Each design element must always have the following tag in front of it, to allow the software to interact with it:

sf:object="LayoutObject" class="LayoutObject"

Each design element must have an ID tag. It should represent the actual function of the tag

	Function
	ID

	Images
	DesignImage

	Colors
	DesignColor

	Borders
	DesignBorder

	Text decoration
	DesignText

	Padding
	DesignPadding

	Spacing
	DesignSpacing

However these names are suggestion – the ID should most closely resemble the function of the design element, as the name will be shown to the user in the software for customization. The first letter of every word should be capitalized, and the name should have no spaces in it. Note that you always must write the name in the same way as your code will otherwise not work.

If you have multiple design objects of the same type, you can add numbers to them, such as DesignImage01, DesignImage02 and so on.

Of course if you want to use the same object such as a DesignColor in a number of locations, you must always use the same name.

Layout objects can be included inside XHTML tags such as <table>, <td>, <div>, .

Please note that the image settings such as name of image and image properties for the DesignImage are set in website.css. The same of course would apply to all other design elements.

	DesignImage01 as background image for the DIV
	<div sf:object="LayoutObject" class="LayoutObject" id="DesignImage01"></div>

	DesignImage01 as background image for the SPAN
	

	DesignImage01 as background image for the TABLE
	<table cellpadding="0" cellspacing="0" border="0" sf:object="LayoutObject" class="LayoutObject" id=" DesignImage01"><tr><td></td></tr></table>

	DesignImage01 as background image for the CELL
	<td sf:object="LayoutObject" class="LayoutObject" id="DesignImage01"></td>

Page Templates
The Page template is called in by the Website theme to define the look of the content area. You can switch between different looks to change the look of the website.
Page HTML areas
	You can add HTML code into multiple positions on each page. This HTML code will only be shown on the specific page you add it to.

HTML code is added to a page with the Add HTML code function in the ShopFactory Page properties dialog.

To add HTML code to ALL pages at the same time, review Website HTML areas
	[image: image9.emf]

Product Loop Templates

The product loop contains all the products assigned to a page or product category (another name for page). The product loop does not have to show all product details – it just has to provide enough information to make the customer follow a link to the actual Product page, the page which lists “More Details” about the products.

In ShopFactory to get to the More Details Page you select a product and then click on the More Details button.
This means a product loop could contain as little as a product title or a product image, which are linked to the More Details Page or as much as all the product details.

The More Details Page is only generated, if the product loop does not display some product elements. This could be a “List of Features”, a “Longer Description” but also the actual Buy Now Button to add product to the shopping cart.

The default product loop templates which we have assigned to many website themes contain the most used elements, to prevent the creation of More Details Pages – mainly to reduce the time it takes to publish a shop.

However this is not a requirement.

Products templates (More details page)
If a product element is not included in the product loop, then ShopFactory automatically creates a “More details page”, which then shows all product elements. This is based on the Products template selected.
Object fragments
Object fragments are bits of code ShopFactory calls in from the Object fragments folder. By creating a new code fragment and linking a template to it, the new design will be called into the template.

An example for this is the Mini-Cart – shopping cart embedded on all pages. While the mini cart can be selected via the Designer menu, most object fragments can not be selected by the user and are linked directly to the template.

Existing Object fragments

Login
Defines the log-in field design.

Search

Defines the search field design.

Minicart
Defines the look of the Mini-Cart embedded on all pages. Can be selected via the Designer menu.
Switch Currency

Defines the switching the currency function
Switch Language (SwitchLang)

Defines the switch language function
Special Page Templates
Special Page templates work just like normal templates.

In fact in ShopFactory they are often simply a copy of the same page style, placed into the Special Page template folder for each special page type.

However you can customize the design of each of these pages to better cater for the special function the page performs.

This is just done like editing any other page, with the only difference being that the page is located in the appropriate special page folder.
Build.ini files

This file gives ShopFactory instructions on what to do with the files in a template folder.

It defines if ShopFactory copies files from this template folder to a new project, or if a file should be converted before being placed into the project folder.

Example Page Build.ini file

In the following Build.ini file ShopFactory is given the instructions to convert the website.html file before placing it into the new folder.

Converting means it will add content added by the user to the page or follow other instructions contained within the template.
ShopFactory is also told to simply copy the files stylesheet.css and add_to_cart.png to the new project, and to specifically place the add_to_cart.png image into the media folder of the project (otherwise it wouldn’t be found (by the shop.)

[Page]
Convert=%websitetemplate%\parseLang\website.html,%contents%\%lang%\%pageloc%
Copy=stylesheet.css,%styles%\pd_%stylename%.css
Copy=add_to_cart.png,%media%\add_to_cart.png

; Version tag, please don't remove
; $Revision: 2574 $ $HeadURL: svn://3d3-p432/ShopFactory/trunk/bin/Templates/Products/PDAK_1/build.ini $

You could also add another template to the page folder which uses the ShopFactory SF-tags, and have ShopFactory convert it by adding it to the build.ini file.
This could be used for example to create an RSS Template for an RSS feed for the page.

Alias.ini files

Alias.ini files are advanced files which give ShopFactory instructions and allow various settings of ShopFactory to be overridden on a template level. They should only be edited with a full understanding of how they work.
Switching Website Themes
Automatic image resizing when switching website themes
When you switch a website theme from large to small, images and the link box width used on the page should automatically be adjusted by ShopFactory, to make sure that everything on the page still fits into the smaller content area provided by the smaller template.

This is based on the presets on the page and product loop templates for the different available content areas – see Page Pre-sets
To do this ShopFactory does not actually physically resize images – only the HTML values to display the images are changed.

The SF Smart-tags

In most cases you can create a new template design be editing an existing template and by simply moving elements on the pages around as well as by adjusting the style sheets.

This is made easier by the use of SF Smart tags, XML based tags and attributes which make up the template language used by the software to convert a website project into published website.
These tags and attributes allow the software to determine where HTML elements are positioned on the page and any style or decoration those and surrounding elements might have.

These tags also define the behaviour of ShopFactory as explained in ShopFactory Template Presets.

One of the abilities the tags have is to make sure that HTML code is only added to a page, if a certain condition is met – for example the HTML code to display an image will only be added, is an image is added to ShopFactory.

By moving the Smart tag elements, adjusting the HTML and the style sheets, you can create almost any design you want to.

SF Namespace

XML based tags and attributes make up the template language used by the software to convert a website project into published website. These tags and attributes allow the software to determine where HTML elements are positioned on the page and any style or decoration those and surrounding elements might have.

Through these tags and attributes designers can create their own unique themes for use with the software, providing endless possibilities of customization for both the designers and the software users.

SF Elements

SF elements consist of a collection of functional tags and attributes that can be inserted into an (X)HTML document. Each element has an "object" attribute that holds the object/array path or condition statement depending on what is being referenced.

Below you can see a simple example of the SF conventions within an HTML document.
<html>

<body>

<sf:if object="SiteTitle">

<h1><sf:value object="SiteTitle" /></h1>

</sf:if>

</body>

</html>

sf:object

sf:object is used as an attributes of HTML tags to define areas of importance which can be controlled from inside the software.

Note:
This attribute is sometimes accompanied by an HTML id attribute that must contain a predefined value for the software to work correctly.

Below is an example of sf:object being used to identify the LayoutMaster object in a HTML document.

<html>

<body sf:object="LayoutMaster"></body>

</html>

sf:name

sf:name is used similarly to sf:object with the exception that it also sets the id attribute of the HTML element it is added to. This is needed for the software to uniquely identify some elements that are repeated throughout a website such as Paragraphs or Products.

Note: The id attribute is set automatically by the software for any HTML tag with an sf:name attribute, setting the id attribute on these tags will cause an undesired result.

An Example of sf:name being used to identify the PageTitle object.

<div sf:name="PageTitle">

<sf:value="PageTitle" />

</div>

sf:value

sf:value is used to display an objects text content.

An example of sf:value displaying the PageTitle content.
<sf:value="PageTitle" />

sf:if

sf:if allows us to include information in the document only if it meets a certain criteria.

sf:if statements include a set of simple matching operands

	
	Example
	Description

	>
	Object > 0
	Is greater than

	<
	Object < 10
	Is less than

	=
	Object = 5
	Equals

	&
	Object & Object < 10
	Separator, match both adjacent conditions

	|
	Object = 1 | Object = 5
	Separator, match either adjacent conditions

	!=
	Object != 1
	Not equal

	!
	!Object
	Non value or doesn’t exist

Also note that sub expressions separated by & and | operands can also be enclosed in brackets to enforce in what order the expression is interpreted in. Also in the comparisons above, an empty value is interpreted as being equal to 0.
An example of sf:if being used to check and display the site title
<sf:if object="SiteTitle">

The title of this site is <sf:value object="SiteTitle" />

</sf:if>

sf:else

sf:else is used with sf:if statements as an alternative if the criteria isn’t met. It essentially reverses the if so for example if the if says "Value = 5" the else is true if "Value != 5" e.g. the direct opposite.
An Example of sf:else with the site title being checked.
 <sf:if object="SiteTitle">

The title of this site is <sf:value object="SiteTitle" />

</sf:if>

<sf:else>

No site title here.

</sf:else>

sf:repeat XE "sf\:repeat"
sf:repeat is used to loop through and display a series of objects of the same type such as Products or Paragraphs.

An example of looping through the ProductLoop array, and displaying some product details about each product.
<sf:repeat object="ProductLoop">

<div>

<sf:object object="ProductTitle" />

<sf:object object="ProductDescription" />

</div>

</sf:repeat>

sf:inject

sf:inject can only be used within sf:repeat. It allows you to output code at certain intervals within the loop.

sf:inject statement’s object attribute will accept a number or one of the following interval instructions

	Name
	Description

	AllButLast
	All iterations except last

	FirstOnPage
	The first of each split page

	First
	Only first iteration

	Last
	Only last iteration

	Even
	Every even iteration

	Odd
	Every odd iteration

	A number greater than 0
	Every time through the loop if the current interval is evenly divisible by this value, the inject will be true.

An example of sf:inject being used to give every product on an even iteration a different class
<sf:repeat object="ProductLoop">

<sf:inject object="Odd">

<div class="ProductOddClass">

</sf:inject>

<sf:inject object="Even">

<div class="ProductEvenClass">

</sf:inject>

<sf:value object="ProductTitle" />

<sf:value object="ProductDescription" />

</div>

</sf:repeat>
sf:repeatc

sf:repeatc is used to loop through and display a series of objects of the same type such as Products or Paragraphs, but with a condition.

An example of looping through the ParentLoop array (the page hierachy), and displaying some product details about each page.
<sf:repeatc object="ParentLoop" condition="(isvisible[.ID]=1)&(isdeleted[.ID]=0)">

<div>

<sf:value object="PageTitle" />

<sf:value object="PageDescription" />

</div>

</sf:repeatc>

sf:injectc

sf:injectc can only be used within sf:repeatc. It allows you to output code at certain intervals within the loop.

sf:injectc statement’s object attribute will accept a number or one of the following interval instructions

	Name
	Description

	AllButFirst
	All iterations except first

	FirstOnPage
	The first of each split page

	First
	Only first iteration

	Even
	Every even iteration

	Odd
	Every odd iteration

	A number greater than 0
	Every time through the loop if the current interval is evenly divisible by this value, the inject will be true.

An example of sf:injectc being used to give every product on an even iteration a different class

<sf:repeatc object="ProductLoop" condition=".Translated=1">

<sf:injectc object="Odd">

<div class="ProductOddClass">

</sf:injectc>

<sf:injectc object="Even">

<div class="ProductEvenClass">

</sf:injectc>

<sf:value object="ProductTitle" />

<sf:value object="ProductDescription" />

</div>

</sf:repeatc>

sf:macro

sf:macro refers to predefined snippets of template code that have been created to minimise the developers time and effort when reproducing certain functionality in their website themes.

An example of using sf:macro to call the EnablePage macro.
<sf:macro object="EnablePage" />

sf_ or sf:value

The <sf_> tag is a special tag that allows placing values inside an HTML tag’s attributes.

An example of using <sf_WelcomeURL> being used inside a href attribute.
<a href="<sf_WelcomeURL>" />Link to the Home Page

The sf:value tag is a synonym for the <sf_> but cannot be used in a tag.
An example of using sf:value:

<a href="<sf_WelcomeURL>" /><sf:value object="PageTitle" />

Global colour mapping

This is for your information only. You should never have to change the existing colour mapping outside of ShopFactory.

‘Global Colour mapping’ groups multiple elements into ‘GC’ CCS classes, for the purpose of setting colours throughout the website. There are 49 GC (GC1 – GC49) classes which are individually allocated with a text colour, background colour and border colour. Each colour is represented with an option of up to 16 C (C1 – C16) colours. The ‘C’ colours may be edited via the ‘Customize design’ mode within ShopFactory.

Example:
The colour (#f9f9ee) associated with C8 is mapped to the background of GC12 Product Description, Product Detailed Description and GC23 Page Image Caption.

GC classes may also contain several other settings which include Auto (Text Colours), No Settings (Border colours) or Transparent (Background colours).

By modifying the values of a GC class, multiple elements which are grouped to the modified GC throughout the site, will be modified automatically.

It is recommended for developers to modify colour mapping through ‘Customize Design.’ Changing colours and mapping generally affects two or more files, which need to stay synchronised at all times.

Manually modified mapping, may lead to unexpected results. It is recommended when changing mapping manually, the developer should be familiar with XHTML, XML and CSS.

Two files for general manual remapping:
My Documents/Name and version of software/Name of new theme/Runtime/contents/styles/website.css

My Documents/Name and version of software/Name of new theme/Templates/Website/Name of theme/mapping.xml

The mapping.xml and website.css files also contain other information, such as scroll bar colours, fonts, special text colours and default link colours.
Optional files for manual colour changes:
My Documents/Name and version of software/Name of new theme/Templates/Website/Name of theme/media/*.xml

Flash XML files do not require the # in front of the hexadecimal colours when modifying the CLR value. If colours are not correctly specified, the affected object will appear to be the colour black.

Default colour mapping list

Default Colour Mapping list below is based off the theme AAA_1:
	Class
	Element ID

	GC1
	WebsiteContent

	GC2
	Index1

	GC3
	Index2

	GC4
	ResellerFormTable, Product, ProductWeight, ProductWeightUnit, BreadCrumbs

	GC5
	ProductTableHeader, ViewbasketHeader

	GC6
	BreadCrumbs

	GC7
	ChangeCurrency

	GC8
	PageLinkBox, pageimagecaption

	GC9
	ProductHighlight, ProductCrossPromotion, ProductFeatures

	GC10
	ProductOptions

	GC11
	ProductIntroduction, ProductDeliveryAdvice

	GC12
	ProductDescription, ProductDetailedDescription, ListColor1

	GC13
	AddToBasketDialog

	GC14
	ViewbasketRow1, ListColor2

	GC15
	ViewbasketRow2

	GC16
	ViewbasketExtras

	GC17
	PageTitle

	GC18
	PageIntroduction

	GC19
	PageDescription

	GC20
	ProductPriceIntro, ProductCurrencySymbol, ProductPrice, ProductBasePrice,ProductPriceOriginal, ProductCurrencySymbol, ProductPrice, ProductBasePrice, ProductPriceOriginal

	GC21
	ShopDiscountMessage, ProductDiscountMessage

	GC22
	Content

	GC23
	PageImageCaption, MoreDetails

	GC24
	ViewbasketHeader, ProductMoreImagesIcon

	GC25
	Add to basket dialog button, FavoritesButton

	GC26
	TextInput in Basket page, Checkboxes (Add to basket dialog)

	GC27
	NextPreviousLink

	GC28
	Index1 TD

	GC29
	Index1 mouseover

	GC30
	index1 sub levels

	GC31
	index1 sub levels mouse over

	GC32
	SideBar_L, Index2 td

	GC33
	Index2 td mouseover

	GC34
	index2 sub levels

	GC35
	index2 sub levels mouse over

	GC36
	Mini Cart

	GC37
	ProductTitle

	GC38
	Website

	GC39
	WebsiteHeader

	GC40
	Sitefooter

	GC41
	Body

	GC42
	WebsiteSlogan

	GC43
	SelectBar

	GC45
	Container1

	GC46
	Reserved for website theme

	GC47
	Reserved for website theme

	GC48
	Reserved for website theme

	GC49
	Reserved for website theme

	GC50
	PageLinkBoxContainer1

	GC51
	SideBar_R

	GC52
	Product discount special text

	GC53
	Reserved for page style

	GC54
	Reserved for page style

	GC55
	Reserved for page style

	GC56
	Product calculated price discount special text

	GC57
	Reserved for product style

	GC58
	Reserved for product style

	GC59
	Reserved for product style

	GC60
	Spare not used

	GC61
	Spare not used

Website Html Components

Enable page

This macro initializes and displays meta and language information in the appropriate places in the HTML document

Note: This Macro must be placed before the opening HTML tag.

<sf:macro object="EnablePage" />

Page head title

This macro displays the page relative title.

Note:
 This macro must be placed inside the title node within the head node.

<sf:macro object="DisplayPageTitle" />

Layout master

This object defines the containing layout element for the HTML document. This object is usually placed in the body tag

<body sf:object="LayoutMaster" />

Site title

This object defines the containing layout element for the HTML document. This object is usually placed in the body tag

<sf:if object="SiteTitle>

<sf:value object="SiteTitle" />

</sf:if>

sf:if object="SiteTitle"
Evaluates true if the site title exists

sf:value object="SiteTitle"
Displays the SiteTitle content

Company image

<sf:if object="CompanyImage">

<div sf:object="CompanyImage" id="CompanyImage">

<a href="<sf_WelcomeUrl>" title="<sf_CompanyImageScreentip>">

<sf:macro object="CompanyImage" recwidth="" recheight="" maxwidth="" maxheight="" />

</div>

</sf:if>

Note: The div element can be substituted with any valid HTML element.

sf:if object="CompanyImage"
Evaluates true if the company image exists

sf:object="CompanyImage"
This object identifies the enveloping element of the company image
Note: The element must also include the following attribute to work correctly

id="CompanyImage"

<sf_WelcomeUrl>

Outputs location of home page
<sf_CompanyImageScreentip>

Outputs company image screen tip
sf:macro object="CompanyImage"
Creates and displays the company image.

CompanyImage Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

Site slogan

This object defines the containing layout element for the HTML document. This object is usually placed in the body tag

<sf:if object="SiteSlogan">

<sf:value object="SiteSlogan" />

</sf:if>

sf:if object="SiteSlogan"
Evaluates true if the site slogan exists

sf:value object="SiteSlogan"
Displays the SiteSlogan content

Search

<sf:if object="SearchEnabled">

<div sf:object="search" id="search">

<sf:macro object="LoadSearch" design="" />

</div>

</sf:if>

Note: The div element can be substituted with any valid HTML element.

sf:if object="SearchEnabled"
Evaluates true if the site wide search is enabled

sf:object="search"
This object identifies the enveloping element of the search code

Note: The element must include the following attribute to work correctly

id="search"

sf:macro object="LoadSearch"
Loads the search code from the ObjectFragment Template

LoadSearch Attributes
	Name
	Description

	design
	Name of the ObjectFragment template to use.

Switch language
<sf:if object="MultipleLanguages">

<div sf:object="SwitchLang" id="SwitchLang">

<sf:macro object="LoadSwitchLang" design="" />

</div>

</sf:if>

sf:if object="MultipleLanguages"
Evaluates true if the site wide search is enabled

sf:object="SwitchLang"
This object identifies the enveloping element of the SwitchLang code
Note: The element must include the following attribute to work correctly

id="SwitchLang"

sf:macro object="SwitchLang"
Loads the search code from the ObjectFragment Template

LoadSearch Attributes
	Name
	Description

	Design
	Name of the ObjectFragment template to use.

Mini cart

<sf:if object="ShopEnabled">

<div sf:object="MiniCart" id="MiniCart">

<sf:macro object="LoadMiniCart" design="" />

</div>

</sf:if>

sf:if object="ShopEnabled"
Evaluates true if the site is a shop

sf:object="MiniCart"
This object identifies the enveloping element of the MiniCart code

Note: The element must include the following attribute to work correctly

id="MiniCart"

sf:macro object="LoadMiniCart"
Loads the search code from the ObjectFragment Template

LoadMiniCart Attributes
	Name
	Description

	design
	Name of the ObjectFragment template to use.

Index 1

<div sf:object="Index1" id="Index1">

<sf:macro object="LoadIndex1" design="" orientation="" scroll="" popupdirection="" showhomelink="" showlinkimagesublevels="" showlinkimagetoplevel=" " maxheight="" />

</div>

sf:object=Index1

This object identifies the enveloping element of the Index1 code

Note: The element must include the following attribute to work correctly

id="Index1"

sf:macro object="LoadIndex1"
Loads the search code from the Index Template

LoadIndex1 Attributes
	Name
	Description

	design
	Name of the preferred Index style to use.

	orientation
	Values: Horizontal or Vertical.
Designates the orientation of the top level of the Index.

	scroll
	A number specifying the width (for Horizontal orientation) or height (for Vertical orientation) if the Index. If the Index width or height exceeds the number, scrollers will automatically be inserted.

	popupdirection
	Values: up, down, left or right.
This attribute is for dropdown menu Index styles. The dropdown menus will popup in the specified direction.

	showhomelink
	Values: true or false.
Automatically add an item in the Index that links to the Home page.

	showlinkimagesublevels
	Values: true or false.
Show the link image, if any, of pages in sublevels of the Index.

	showlinkimagetoplevel
	Values: true or false.
Show the link image, if any, of pages in the top level of the Index.

	maxwidth
	The link image can not be wider than this

	maxheight
	The link image can not be higher than this

Switch currency

<sf:if object="MultipleCurrencies">

<div sf:object="SwitchCurrency" id="SwitchCurrency">

<sf:macro object="LoadSwitchCurrency" design="" />

</div>

</sf:if>

sf:if object="MultipleCurrencies"
Evaluates true if the multiple currencies are supported in shop

sf:object="SwitchCurrency"
This object identifies the enveloping element of the SwitchCurrency code
Note: The element must include the following attribute to work correctly

id="SwitchCurrency"

sf:macro object="LoadSwitchCurrency"
Loads the search code from the ObjectFragment Template

LoadSwitchCurrency Attributes
	Name
	Description

	Design
	Name of the Index template to use.

Login

<sf:if object="DisplayLoginForm">

<div sf:object="Login" id="Login">

<sf:macro object="LoadLogin" design="" />

</div>

</sf:if>

sf:if object="DisplayLoginForm"
Evaluates true if the shop has member/reseller login

sf:object="Login"
This object identifies the enveloping element of the Login code

Note: The element must include the following attribute to work correctly

id="Login"

sf:macro object="LoadLogin"
Loads the login code from the ObjectFragment Template

LoadLogin Attributes
	Name
	Description

	design
	Name of the ObjectFragment template to use.

Index 2
<div sf:object="Index2" id="Index2">

<sf:macro object="LoadIndex2" design="" orientation="" scroll="" popupdirection="" showhomelink="" showlinkimagesublevels="" showlinkimagetoplevel="" />

</div>

sf:if object="Index2"
This object identifies the enveloping element of the index code\

Note: The element must include the following attribute to work correctly

id="Index2"

sf:macro object="LoadIndex2"
Loads the code from the Index Template

LoadIndex2 Attributes
	Name
	Description

	design
	Name of the preferred Index style to use.

	orientation
	Values: Horizontal or Vertical.
Designates the orientation of the top level of the Index.

	scroll
	A number specifying the width (for Horizontal orientation) or height (for Vertical orientation) if the Index. If the Index width or height exceeds the number, scrollers will automatically be inserted.

	popupdirection
	Values: up, down, left or right.
This attribute is for dropdown menu Index styles. The dropdown menus will popup in the specified direction.

	showhomelink
	Values: true or false.
Automatically add an item in the Index that links to the Home page.

	showlinkimagesublevels
	Values: true or false.
Show the link image, if any, of pages in sublevels of the Index.

	showlinkimagetoplevel
	Values: true or false.
Show the link image, if any, of pages in the top level of the Index.

	maxwidth
	The link image can not be wider than this

	maxheight
	The link image can not be higher than this

Content

<div sf:object="Content" id="Content">

<sf:macro object="LoadContent" welcomepagedesign="" welcomeproductdesign="" pagedesign="" productdesign="" detailedproductdesign="" />

</div>

sf:object="Content"
This object identifies the enveloping element of the Content code

Note: The element must include the following attribute to work correctly

id="Content"

sf:macro object="LoadContent"
Loads the content code from the Pages Template

LoadContent Attributes
	Name
	Description

	welcomepagedesign
	

	welcomeproductdesign
	

	pagedesign
	

	productdesign
	

	detailedproductdesign
	

Application logo

sf: macro object="AppLogo"

Displays a small "Powered By" software logo button.

<sf:macro object="AppLogo" />

Page HTML components
Set banner-link image sizes
<sf:macro object="SetBannerLinkImageSizes" maxwidth="" maxheight="" />

sf: macro object="SetBannerLinkImageSizes"
Sets the desired width and height properties for the software to create the Banner images

Set page-link image sizes
<sf:macro object="SetPageLinkBoxImageSizes" fixwidth="" fixheight="" recwidth="" recheight="" maxwidth="" maxheight="" />

sf: macro object="SetPageLinkBoxImageSizes"
Sets the desired width and height properties for the software to create the PageLinkBox images

Breadcrumbs
<sf:if object="NotHomePage">

<div sf:name="Breadcrumbs">

<sf:repeat object="BreadcrumbsContent">

<a href="<sf_BreadcrumbsPagelocation>" title="<sf_BreadcrumbsPagetitle>">

<sf:value object="BreadcrumbsPagetitle" />

</sf:repeat>

</div>

</sf:if>

sf:if object="NotHomePage"
Evaluates true if the current Page is not the Home Page

sf:name="Breadcrumbs"
This name identifies the enveloping element of the breadcrumbs loop
sf:repeat object="BreadcrumbsContent"
Loops through breadCrumbs for current page

sf:value object="BreadcrumbsPagetitle"
Displays the current breadcrumbs page title
<sf_BreadcrumbsPagelocation>

Outputs current breadcrumbs url for use in HTML tag attribute
<sf_BreadcrumbsPagetitle>

Outputs the current breadcrumbs page title for use in HTML tag attribute

Multiple pages
<sf:if object="MultiplePages">

</sf:if>

sf:if object="MultiplePages"
Evaluates true if this Page’s Products/Paragraphs has been automatically separated into multiple pages.

First page
<sf:if object="IsFirstPage">

</sf:if>

sf:if object="IsFirstPage"
Evaluates true if this page is the first of multiple pages.

Last page
<sf:if object="IsLastPage">

</sf:if>

sf:if object="IsLastPage"
Evaluates true if this page is the last of multiple pages.

Html code top
<!-- Start HTMLCode top -->

<sf:if object="HasHtmlCodeTop">

<div sf:name="Htmlcode">

<sf:macro object="Start_HTMLCodeTop_loop" />

<div sf:object="HtmlcodeHtml" id="HtmlcodeHtml-<sf_.ID>"><sf:value object="HtmlcodeHtml">Page Top HTML Code</sf:value></div>

<sf:macro object="End_HTMLCodeTop_loop" />

</div>

</sf:if>

<!-- End HTMLCode top -->

sf:if object="HasHtmlCodeTop"
Evaluates true if user defined HTML code exists for the top

sf:name="Htmlcode"
This name identifies the enveloping element of the HTML code loop
sf:repeat object="HtmlCode"
Loops through all user defined HTML code

sf:if object="IsHtmlCodeTop"
Evaluates true if the current HTML is intended for the top

sf:name="HtmlcodeHTML"
This name identifies the enveloping element of the current HTML code

sf:value object="HtmlcodeHTML"
Displays the current HTML
Html code bottom
<!-- Start HTMLCode bottom -->

<sf:if object="HasHtmlCodeBottom">

<div sf:name="Htmlcode">

<sf:macro object="Start_HTMLCodeBottom_loop" />

<div sf:object="HtmlcodeHtml" id="HtmlcodeHtml-<sf_.ID>"><sf:value object="HtmlcodeHtml">Page Bottom HTML Code</sf:value></div>

<sf:macro object="End_HTMLCodeBottom_loop" />

</div>

</sf:if>

<!-- End HTMLCode bottom -->

sf:if object="HasHtmlCodeBottom"
Evaluates true if user defined HTML code exists for the bottom

sf:name="Htmlcode"
This name identifies the enveloping element of the HTML code loop
sf:repeat object="HtmlCode"
Loops through all user defined HTML code

sf:if object="IsHtmlCodeBottom"
Evaluates true if the current HTML is intended for the bottom

sf:name="HtmlcodeHTML"
This name identifies the enveloping element of the current HTML code

sf:value object="HtmlcodeHTML"
Displays the current HTML
Html code snippet area2
<!-- Start Page code snippet area2 -->

<sf:if object="HasPageCodeSnippetArea2">

<div sf:name="PageCodeSnippetArea2" class="PageCodeSnippetArea2">

<sf:macro object="Start_PageCodeSnippetArea2_loop" /><sf:set object="__RightStripHasContents=true" />

<div sf:name="PageCodeSnippetArea2Content" class="PageCodeSnippetArea2Content">

<sf:macro object="Start_PageCodeSnippetArea2Content" />

<sf:macro object="PageCodeSnippetArea2Content">Page code snippet area2</sf:macro>

<sf:macro object="End_PageCodeSnippetArea2Content" />

</div>

<sf:macro object="End_PageCodeSnippetArea2_loop" />

</div>

</sf:if>

<!-- End Page code snippet area2 -->

sf:if object="HasHtmlCodeBottom"
Evaluates true if user defined HTML code exists for the bottom

sf:name="Htmlcode"
This name identifies the enveloping element of the HTML code loop
sf:repeat object="HtmlCode"
Loops through all user defined HTML code

sf:if object="IsHtmlCodeBottom"
Evaluates true if the current HTML is intended for the bottom

sf:name="HtmlcodeHTML"
This name identifies the enveloping element of the current HTML code

sf:value object="HtmlcodeHTML"
Displays the current HTML
Website HTML code snippet link box bottom
<!-- Start WebsiteLinkBoxBottom -->

<sf:if object="HasWebsiteLinkBoxBottom">

<div sf:name="WebsiteLinkBoxBottom" class="WebsiteLinkBoxBottom">

<sf:macro object="Start_WebsiteLinkBoxBottom_loop" /><sf:set object="__RightStripHasContents=true" />

<div sf:name="WebsiteLinkBoxBottomContent" class="WebsiteLinkBoxBottomContent">

<sf:macro object="Start_WebsiteLinkBoxBottomContent" />

<sf:macro object="WebsiteLinkBoxBottomContent">Website code snippet at bottom</sf:macro>

<sf:macro object="End_WebsiteLinkBoxBottomContent" />

</div>

<sf:macro object="End_WebsiteLinkBoxBottom_loop" />

</div>

</sf:if>

<!-- End WebsiteLinkBoxBottom -->

Website HTML code snippet link box bottom
<!-- Start WebsiteLinkBoxTop -->

<sf:if object="HasWebsiteLinkBoxTop">

<div sf:name="WebsiteLinkBoxTop" class="WebsiteLinkBoxTop">

<sf:macro object="Start_WebsiteLinkBoxTop_loop" /><sf:set object="__RightStripHasContents=true" />

<div sf:name="WebsiteLinkBoxTopContent" class="WebsiteLinkBoxTopContent">

<sf:macro object="Start_WebsiteLinkBoxTopContent" />

<sf:macro object="WebsiteLinkBoxTopContent">Website code snippet at top</sf:macro>

<sf:macro object="End_WebsiteLinkBoxTopContent" />

</div>

<sf:macro object="End_WebsiteLinkBoxTop_loop" />

</div>

</sf:if>

<!-- End WebsiteLinkBoxTop -->

WebSite HTML code top
<!-- Start WebSite HTML code top -->

<sf:if object="HasWebSiteHtmlCodeTop">

<sf:macro object="Start_WebSiteHTMLCodeTop_loop" />

<div sf:object="WebSiteHtmlCodeTop" id="WebSiteHtmlCodeTop-<sf_.ID>">

<sf:macro object="Start_WebSiteHTMLCodeTopContent" />

<sf:macro object="WebSiteHTMLCodeTopContent">Website Top HTML Code</sf:macro>

<sf:macro object="End_WebSiteHTMLCodeTopContent" />

</div>

<sf:macro object="End_WebSiteHTMLCodeTop_loop" />

</sf:if>

<!-- End WebSite HTML code top -->

WebSite HTML code bottom
<!-- Start WebSite HTML code bottom -->

<sf:if object="HasWebSiteHtmlCodeBottom">

<sf:macro object="Start_WebSiteHTMLCodeBottom_loop" />

<div sf:object="WebSiteHtmlCodeBottom" id="WebSiteHtmlCodeBottom-<sf_.ID>">

<sf:macro object="Start_WebSiteHTMLCodeBottomContent" />

<sf:macro object="WebSiteHTMLCodeBottomContent">Website Bottom HTML Code</sf:macro>

<sf:macro object="End_WebSiteHTMLCodeBottomContent" />

</div>

<sf:macro object="End_WebSiteHTMLCodeBottom_loop" />

</sf:if>

<!-- End WebSite HTML code bottom -->

Page HTML code snippet area 1
<!-- Start PageCodeSnippetArea1 -->

<sf:if object="HasPageCodeSnippetArea1">

<div sf:name="PageCodeSnippetArea1" class="PageCodeSnippetArea1">

<sf:macro object="Start_PageCodeSnippetArea1_loop" />

<div sf:name="PageCodeSnippetArea1Content" class="PageCodeSnippetArea1Content">

<sf:macro object="Start_PageCodeSnippetArea1Content" />

<sf:macro object="PageCodeSnippetArea1Content">Page code snippet area1</sf:macro>

<sf:macro object="End_PageCodeSnippetArea1Content" />

</div>

<sf:macro object="End_PageCodeSnippetArea1_loop" />

</div>

</sf:if>

<!-- End PageCodeSnippetArea1 -->

Index code snippet top
<!-- Start IndexCodeSnippetTop -->

<sf:if object="HasIndexCodeSnippetTop">

<div sf:name="IndexCodeSnippetTop" class="IndexCodeSnippetTop">

<sf:macro object="Start_IndexCodeSnippetTop_loop" />

<div sf:name="IndexCodeSnippetTopContent" class="IndexCodeSnippetTopContent">

<sf:macro object="Start_IndexCodeSnippetTopContent" />

<sf:macro object="IndexCodeSnippetTopContent">Website code snippet at top</sf:macro>

<sf:macro object="End_IndexCodeSnippetTopContent" />

</div>

<sf:macro object="End_IndexCodeSnippetTop_loop" />

</div>

</sf:if>

<!-- End IndexCodeSnippetTop -->

Index code snippet bottom

<!-- Start IndexCodeSnippetBottom -->

<sf:if object="HasIndexCodeSnippetBottom">

<div sf:name="IndexCodeSnippetTop" class="IndexCodeSnippetTop">

<sf:macro object="Start_IndexCodeSnippetBottom_loop" />

<div sf:name="IndexCodeSnippetBottomContent" class="IndexCodeSnippetBottomContent">

<sf:macro object="Start_IndexCodeSnippetBottomContent" />

<sf:macro object="IndexCodeSnippetBottomContent">Website code snippet at bottom</sf:macro>

<sf:macro object="End_IndexCodeSnippetBottomContent" />

</div>

<sf:macro object="End_IndexCodeSnippetBottom_loop" />

</div>

</sf:if>

<!-- End IndexCodeSnippetBottom -->

WebSite footnote
<!-- Start WebsiteFootnote -->

<div sf:name="WebSiteFootnote" class="WebSiteFootnote">

<sf:value object="WebSiteFootnote">WebsiteFootnote</sf:value>

</div>
<!-- End WebsiteFootnote -->

Banner top
<sf:if object="HasBannerTop">

<div sf:name="Banner">

<sf:repeat object="BannerContent">

<sf:if object="IsBannerTop">

<a href="<sf_BannerLocation>" target="<sf_BannerTarget>">

<div sf:name="BannerImage">

<sf:macro object="BannerImage" maxwidth="" maxheight="" border="0" />

</div>

<div sf:name="BannerCaption">

<sf:value object="BannerCaption" />

</div>

</sf:if>

</sf:repeat>

</div>

</sf:if>

sf:if object="HasBannerTop"
Evaluates true if user defined banner links exists for the top

sf:name="Banner"
This name identifies the enveloping element of the banner links loop
sf:repeat object="BannerContent"
Loops through all banner links

sf:if object="IsBannerTop"
Evaluates true if the current banner link is intended for the top

sf:name="BannerImage"
This name identifies the enveloping element of the current banner image

sf:macro object="BannerImage"
Creates and displays the current banner image

BannerImage Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

sf:name="BannerCaption"
This name identifies the enveloping element of the current banner caption

sf:value object="BannerCaption"
Displays the banner caption content

Page link box
<sf:if object="PageLinkBox">

<div sf:name="PageLinkBox">

<sf:repeat object="PageLinkBoxLoop">

<a target="<sf_PageLinkBoxTarget>" href="<sf_PageLinkBoxHRef>">

<div sf:name="PageLinkBoxTitle">

<sf:value object="PageLinkBoxTitle" />

</div>

<div sf:name="PageLinkBoxImage">

<sf:macro object="PageLinkBoxImage" recwidth="" recheight="" maxwidth="" maxheight="" border="" />

</div>

 <div sf:name="PageLinkBoxDescription">

<sf:value="PageLinkBoxDescription" />

</div>

 <sf:macro object="PageLinkBox_MoreDetails" />

</sf:repeat>

</div>

</sf:if>

sf:name="PageLinkBox"

Evaluates true if the current page contains page links

sf:name="PageLinkBox"
This name identifies the enveloping element of the page link loop

sf:repeat object="PageLinkBoxLoop"
Loops through page links

sf:name="PageLinkBoxTitle"
This name identifies the enveloping element of the current page link title

sf:value object="PageLinkBoxTitle"
Displays the page link title content

sf:name="PageLinkBoxImage"
This name identifies the enveloping element of the current page link title

sf:macro object="PageLinkBoxImage"
Creates and displays the current page link image

PageLinkBoxImage Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

sf:name="PageLinkBoxDescription"
This name identifies the enveloping element of the current page link description

sf:value object="PageLinkBoxDescription"
Displays the page link description

sf:macro object="PageLinkBox_MoreDetails"
This macro outputs an HTML anchor pointing to a linked Products more details page if it has one.

Page image
<sf:if="PageImage">

<div sf:name="PageImage">

<sf:macro object="PageImage" border="" recwidth="" recheight="" maxwidth="" maxheight="" />

</div>

<div sf:name="PageImageCaption">

<sf:value object="PageImageCaption" />

</div>

</sf:if>

sf:if="PageImage"
Evaluates true if the current page image exists

sf:macro object="PageLinkBoxImage"
Creates and displays the page image

PageLinkBoxImage Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

sf:name="PageImageCaption"
This name identifies the enveloping element of the current page link description

sf:value object="PageImageCaption"
Displays the page image caption content

Page title
<sf:if="ShowPageTitle">

<div sf:name="PageTitle">

<sf:value object="PageTitle" />

</div>

</sf:if>

sf:if="ShowPageTitle"
Evaluates true if the page has a title

sf:name="PageTitle"
This name identifies the enveloping element of the current page link title

sf:value object="PageTitle"
Displays the page title content

Shop discount message
<sf:if="ShowShopDiscountMessage">

<div sf:name="ShopDiscountMessage">

<sf:value object="ShopDiscountMessage" />

</div>

</sf:if>

sf:if="ShowShopDiscountMessage"
Evaluates true if there is a shop disount message applicable to the current page

sf:name="ShopDiscountMessage"
This name identifies the enveloping element of the shop discount message

sf:value object="ShopDiscountMessage"
Displays the shop discount message content

Page introduction
<div sf:name="PageIntroduction">

<sf:value object="PageIntroduction" />

</div>

sf:name="PageIntroduction"
This name identifies the enveloping element of the page introduction

sf:value object="PageIntroduction"
Displays the page introduction content

Page description
<div sf:name="PageDescription">

<sf:value object="PageDescription" />

</div>

sf:name="PageDescription"
This name identifies the enveloping element of the page description

sf:value object="PageDescription"
Displays the page description content

Navigation sub-levels
<sf:macro object="SubPageNavigationSubLevels_Top" />

<sf:macro object="SubPageNavigationSubLevels_Bottom" />

sf:macro object="SubPageNavigationSubLevels_Top"
Designates the top position for the subpage navigation component.
sf:macro object="SubPageNavigationSubLevels_Bottom"
Designates the bottom position for the subpage navigation component.
Product loop
<sf:macro object="LoadProductLoop" />

sf:macro object="LoadProductLoop"
Loads ProductLoop template

Product footer
<div sf:name="PageFooter">

<div sf:name="PageFootnote">

<sf:value object="PageFootnote" />

</div>

</div>

sf:name="PageFooter"
This name identifies the enveloping element of the page footer

sf:name="PageFootNote"
This name identifies the enveloping element of the page foot note

sf:value object="PageFootNote"
Displays the page footnote content

Banner bottom
<sf:if object="HasBannerBottom">

<div sf:name="Banner">

<sf:repeat object="BannerContent">

<sf:if object="IsBannerBottom">

<a href="<sf_BannerLocation>" target="<sf_BannerTarget>">

<div sf:name="BannerImage">

<sf:macro object="BannerImage" maxwidth="" maxheight="" border="0" />

</div>

<div sf:name="BannerCaption">

<sf:value object="BannerCaption" />

</div>

</sf:if>

</sf:repeat>

</div>

</sf:if>

sf:if object="HasBannerBottom"
Evaluates true if user defined banner links exists for the bottom

sf:name="Banner"
This name identifies the enveloping element of the banner links loop
sf:repeat object="BannerContent"
Loops through all banner links

sf:if object="IsBannerBottom"
Evaluates true if the current banner link is intended for the bottom

sf:name="BannerImage"
This name identifies the enveloping element of the current banner image

sf:macro object="BannerImage"

Creates and displays the current banner image

BannerImage Attributes

	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

sf:name="BannerCaption"
This name identifies the enveloping element of the current banner caption

sf:value object="BannerCaption"
Displays the banner caption content

Mulitple pages index top

<sf:macro object="MultiplePagesIndexTop" />

sf:macro object="MultiplePagesIndexTop"
Outputs a div as the place holder for the multiple pages index before product/paragraph list

Mulitple pages index bottom

<sf:macro object="MultiplePagesIndexBottom" />

sf:macro object="MultiplePagesIndexBottom"
Outputs a div as the place holder for the multiple pages index after product/paragraph list
Product Loop HTML Components

Set cross promotion image sizes
<sf:macro object="SetProductCrossPromotionImageSizes" recwidth="" recheight="" maxwidth="" maxheight="" />

sf: macro object="SetProductCrossPromotionImageSizes"
Sets the desired width and height properties for the software to create the Banner images

SetProductCrossPromotionImageSizes Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

Set product image sizes
<sf:macro object="SetProductImageSizes" recwidth="" recheight="" maxwidth="" maxheight="" />

sf: macro object="SetProductImageSizes"
Sets the desired width and height properties for the software to create the Banner images

SetProductImageSizes Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

Set page-link image sizes
<sf:macro object="SetPageLinkBoxImageSizes" fixwidth="" fixheight="" recwidth="" recheight="" maxwidth="" maxheight="" />

sf: macro object="SetPageLinkBoxImageSizes"
Sets the desired width and height properties for the software to create the PageLinkBox images

Product loop
<form name="productForm">

<sf:repeat object="Productloop">

<sf:if object="IsTranslated">

<div sf:name="Product">

<!-- Product/Paragraph Information must go here -->

</div>

</sf:if>

</sf:repeat>

</form>

<form name="productForm">

This HTML tag is needed to allow users to add products to a cart if the site is a Shop.

Note: This tag must envelope the product loop to work correctly.

sf:repeat object="Productloop"
Loops through products/paragraphs for the current page
sf:if object="IsTranslated"
Evaluates true is the product/paragraph is available for the current site language.

sf:name="Product"
This name identifies the enveloping element of the product/paragraph

Product heading
<div sf:object="ProductTableHeader" id="ProductTableHeader-<sf_ID>">

<!—Product/Paragraph information like title, price, etc can go here -->

</div>

sf:object="ProductTableHeader"
This object identifies the enveloping element of the product heading.

Note: The element must include the following attribute to work correctly

id="ProductTableHeader-<sf_ID>"

Product bookmark
<sf:macro object="ProductBookmark" />

sf:macro object="ProductBookmark"
This macro outputs a hidden anchor for linking to this product in cross promotions etc.

Product title
<div sf:name="ProductTitle">

<sf:value object="ProductTitle" />

</div>

sf:name="ProductTitle"
This name identifies the enveloping element of the product title.

sf:value object="ProductTitle"
Displays the product title content.

Product price
Simple method

The simple method allows for the placement of the price using one tag, with the shopping cart taking care of adding the original price and calculated price elements.

<sf:if object="ProductPrice">

<sf:value object="ProductPriceIntro" />

<div sf:name="ProductPrice">

<sf:macro object="jsProductPrice" />

</div>

</sf:if>

sf:if object="ProductPrice"
Evaluates true if the current product has a price.

sf:value object="ProductPriceIntro"
Displays the current products price introduction, i.e. "From" or "Only".

sf:name="ProductPrice"
This name identifies the enveloping element of the product price. Where a product discount applies, the original price and calculated price elements will be automatically placed in this element.

sf:macro object="jsProductPrice"
This macro displays product price.

Method for more placement control

This method allows for greater control over the placement of each element that constitutes a product. Each element can be placed anywhere within the product container element.

<div sf:name="ProductPriceIntro" class="ProductPriceIntro"></div>

<div sf:name="ProductPrice" class=" ProductPrice"></div>

<div sf:name="ProductPriceOriginal" class="ProductPriceOriginal"></div>

<div sf:name="ProductPriceCalculated" class="ProductPriceCalculated"></div>

<div sf:name="ProductIncTaxes" class="ProductIncTaxes"></div>

<sf:macro object="End_ProductPrice" />

sf:name="ProductPriceIntro"
Displays the current product price introduction, i.e. "From" or "Only".

sf:name="ProductPrice"
This name identifies the element for the product price.

sf:name="ProductPriceOriginal"
This name identifies the element for the original product price where a product discount is present. Where a product discount is present, the ProductPrice element will not be used.

sf:name="ProductPriceCalculated"
This name identifies the element for the calculated product price where a product discount is present. Where a product discount is present, the ProductPrice element will not be used.

sf:name="ProductIncTaxes"
This name identifies the element for tax texts associated with the product.

Cart quantity and icons
Simple method

The simple method allows for the placement of the quantity text box, Add To Basket icon and Favorites icon using one tag.
<sf:if object="ProductPrice">

<div id="ProductIcons-<sf_ProductId>">

<sf:macro object="QntyAndIcons" />

</div>

</sf:if>

sf:if object="ProductPrice"
Evaulates true if the current product has a price (we can only purchase a product with a price).

id="ProductIcons-<sf_ProductId>"
This HTML attribute must be apart of the enveloping element for the cart quantity and icons code.

sf:macro object="QntyAndIcons"
This macro displays the quantity text box, Favorites and Add To Basket icons.

Method for more placement control

This method allows for greater control over the placement of each element. Each element can be placed anywhere within the product container element.

<sf:macro object="QntyAndIcons_QntyField" />

<sf:macro object="QntyAndIcons_AddToBasket" />

<sf:macro object="QntyAndIcons_Favorites" />

<sf:macro object="QntyAndIcons_AddToBasket_Text" />

<sf:macro object="QntyAndIcons_Favorites_Text" />

sf:macro object="QntyAndIcons_QntyField"
This macro displays the quantity text box. Only one is allowed per product.

sf:macro object="QntyAndIcons_AddToBasket"
This macro displays the Add To Basket button as an icon image.

sf:macro object="QntyAndIcons_Favorites"
This macro displays the Favorites button as an icon image.

sf:macro object="QntyAndIcons_AddToBasket_Text"
This macro displays the Add To Basket button as a text link.

sf:macro object="QntyAndIcons_Favorites_Text"
This macro displays the Favorites button as a text link.

Base price
<sf:if object="ShowBasePrices&HasBasePrice">

<div sf:object="ProductBasePrice" id="ProductBasePrice-<sf_ID>">

<sf:macro object="jsBaseProductPrice" />

</div>

</sf:if>

sf:if object="ShowBasePrices&HasBasePrice"
Evaulates true if the current product has a base.

sf:object="ProductBasePrice"
This object identifies the enveloping element of the product base price.

Note: The element must also include the following attribute to work correctly

id="ProductBasePrice-<sf_ID>"

sf:macro object="jsBaseProductPrice"
This macro displays the product base price.

Product number
<sf:if object="ShowProductNumber">

<div sf:name="ProductNumber">

<sf:value object="ProductNumber" />

</div>

</sf:if>

sf:if object="ShowProductNumber"
Evaulates true if the the product number exists.

sf:name="ProductNumber"
This name identifies the enveloping element of the product number

sf:value object="ProductNumber"
Displays the product number

Product weight
<sf:if object="ShowProductWeight">

<sf:value object="LD_WEIGHT" />

<div sf:name="ProductWeight">

<sf:value object="ProductWeight" />

</div>

<div sf:name="ProductWeightUnit">

<sf:value object="ProductWeightUnit" />

</div>

</sf:if>

sf:if object="ShowProductWeight"
Evaulates true if the product weight exists.

sf:name="ProductWeight"
This name identifies the enveloping element of the product weight

sf:value object="ProductWeight"
Displays the product weight

sf:name="ProductWeightUnit"
This name identifies the enveloping element of the product weight unit

sf:value object="ProductWeightUnit"
Displays the product weight unit

Product stock
<sf:if object="ShowProductStock">

<div sf:object="ProductStock" id="ProductStock-<sf_ID>"></div>

</sf:if>

sf:if object="ShowProductStock"
Evaluates true if product stock control is enabled.

sf:object="ProductStock"
This object identifies the enveloping element of the product stock

Note: The element must include the following attribute to work correctly

id="ProductStock-<sf_ID>"

Product image
<sf:if object="ProductImageSrc|ProductImageCaption|ProductThumbnailImageSrc|ProductMoreImages">

<sf:macro object="ProductImageGroup" recwidth="" recheight="" maxwidth="" maxheight="" />

</sf:if>

sf:if object="ProductImageSrc|ProductImageCaption|ProductThumbnailImageSrc|ProductMoreImages"
Evaluates true if product image exists.

sf:macro object="ProductImageGroup"
Displays the Product Image.

ProductImageGroup Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

Product options
<sf:if object="HasProductOptions">

<div sf:name="ProductOptions">

<sf:macro object="ProductOptions" />

</div>

</sf:if>

sf:if object="HasProductOptions"
Evaluates true if current product has selectable options.

sf:name="ProductOptions"
This name identifies the element enveloping the product options code

sf:macro object="ProductOptions"
This macro displays the product options.

Product disount message
<sf:if object="ShowProductDiscount">

<div sf:name="ProductDiscountMessage">

<sf:value object="ProductDiscountMessage" />

</div>

</sf:if>

sf:if object="ShowProductDiscount"
Evaluates true if current product has a discount.

sf:name="ProductDiscountMessage"
This name identifies the element enveloping the product discount message

sf:value object="ProductDiscountMessage"
Displays the product discount message

Product international catalog number
<sf:if object="ProductInternationalCatalogNumber">

<sf:value object="LD_EAN" />

<div sf:name="ProductInternationalCatalogNumber">

<sf:value object="ProductInternationalCatalogNumber" />

</div>

</sf:if>

sf:if object="ProductInternationalCatalogNumber"
Evaluates true if current product has an EAN.

sf:name="ProductInternationalCatalogNumber"
This name identifies the element enveloping the product EAN.

sf:value object="ProductInternationalCatalogNumber"
Displays the product EAN.
Product introduction
<div sf:name="ProductIntroduction">

<sf:value object="ProductIntroduction" />

</div>

sf:name="ProductIntroduction"
This name identifies the element enveloping the product introduction

sf:value object="ProductIntroduction"
Displays the product introduction content

Product description
<div sf:name="Product Description ">

<sf:value object="Product Description " />

</div>

sf:name="ProductDescription"
This name identifies the element enveloping the product description

sf:value object="ProductDescription"
Displays the product description content

Product more details link
<sf:macro object="MoreDetails" />

sf:macro object="MoreDetails"
This macro outputs an anchor HTML element link to the product details page with the text LD_PRODUCT_CLICKHERE.
sf:macro object="MoreDetails_BuyNow"
This macro outputs an anchor HTML element link to the product details page with the text LD_BUY_NOW.
Multiple page index
<div sf:object="MultiplePageIndex">

<sf:macro object="MultiplePageIndex" element="" elementclass="" class="" selectedclass="" />

</div>

<sf:macro object="PageBreak" />

sf:object="MultiplePageIndex"
This object identifies the enveloping element for the multiple pages code.

sf:macro sf:object="MultiplePageIndex"
This macro outputs a list of HTML anchors representing page numbers.

MultiplePageIndex Attributes
	Name
	Description

	class
	class of the outputted HTML anchor elements

	selectedclass
	class of the anchor representing the current page

	element
	optional enveloping element for each anchor e.g. div, td, li, etc

	elementclass
	class of enveloping element

sf:macro object="PageBreak"
This macro performs the actual page separation.

Products template components
Product detailed view
<form name="productForm">

<div sf:name="Product">

<!-- Product Information goes here -->

</sf:repeat>

</form>

<form name="productForm">

This HTML tag is needed to allow users to add products to a cart if the site is a Shop.

Note: This tag must envelope the product div to work correctly.
sf:name="Product"
This name identifies the enveloping element of the product

Product heading
<div sf:object="ProductTableHeader" id="ProductTableHeader-<sf_ID>">

<!—Product/Paragraph information like title, price, etc can go here -->

</div>

sf:object="ProductTableHeader"
This object identifies the enveloping element of the product heading.

Note: The element must include the following attribute to work correctly

id="ProductTableHeader-<sf_ID>"
Product bookmark
<sf:macro object="ProductBookmark" />

sf:macro object="ProductBookmark"
This macro outputs a hidden anchor for linking to this product in cross promotions etc.

Product title
<div sf:name="ProductTitle">

<sf:value object="ProductTitle" />

</div>

sf:name="ProductTitle"
This name identifies the enveloping element of the product title.

sf:value object="ProductTitle"
Displays the product title content.

Product price
Simple method

The simple method allows for the placement of the price using one tag, with the shopping cart taking care of adding the original price and calculated price elements.
<sf:if object="ProductPrice">

<sf:value object="ProductPriceIntro" />

<div sf:name="ProductPrice">

<sf:macro object="jsProductPrice" />

</div>

</sf:if>

sf:if object="ProductPrice"
Evaluates true if the current product has a price.

sf:value object="ProductPriceIntro"
Displays the current products price introduction, i.e. "From" or "Only".

sf:name="ProductPrice"
This name identifies the enveloping element of the product price. Where a product discount applies, the original price and calculated price elements will be automatically placed in this element.

sf:macro object="jsProductPrice"
This macro displays product price.

Method for more placement control

This method allows for greater control over the placement of each element that constitutes a product. Each element can be placed anywhere within the product container element.

<div sf:name="ProductPriceIntro" class="ProductPriceIntro"></div>

<div sf:name="ProductPrice" class=" ProductPrice"></div>

<div sf:name="ProductPriceOriginal" class="ProductPriceOriginal"></div>

<div sf:name="ProductPriceCalculated" class="ProductPriceCalculated"></div>

<div sf:name="ProductIncTaxes" class="ProductIncTaxes"></div>

<sf:macro object="End_ProductPrice" />

sf:name="ProductPriceIntro"
Displays the current product price introduction, i.e. "From" or "Only".

sf:name="ProductPrice"
This name identifies the element for the product price.

sf:name="ProductPriceOriginal"
This name identifies the element for the original product price where a product discount is present. Where a product discount is present, the ProductPrice element will not be used.

sf:name="ProductPriceCalculated"
This name identifies the element for the calculated product price where a product discount is present. Where a product discount is present, the ProductPrice element will not be used.

sf:name="ProductIncTaxes"
This name identifies the element for tax texts associated with the product.

Cart quantity and icons
Simple method

The simple method allows for the placement of the quantity text box, Add To Basket icon and Favorites icon using one tag.
<sf:if object="ProductPrice">

<div id="ProductIcons-<sf_ProductId>">

<sf:macro object="QntyAndIcons" />

</div>

</sf:if>

sf:if object="ProductPrice"
Evaulates true if the current product has a price (we can only purchase a product with a price).

id="ProductIcons-<sf_ProductId>"
This HTML attribute must be apart of the enveloping element for the cart quantity and icons code.

sf:macro object="QntyAndIcons"
This macro displays the quantity text box, Favorites and Add To Basket icons.

Method for more placement control

This method allows for greater control over the placement of each element. Each element can be placed anywhere within the product container element.

<sf:macro object="QntyAndIcons_QntyField" />

<sf:macro object="QntyAndIcons_AddToBasket" />

<sf:macro object="QntyAndIcons_Favorites" />

<sf:macro object="QntyAndIcons_AddToBasket_Text" />

<sf:macro object="QntyAndIcons_Favorites_Text" />

sf:macro object="QntyAndIcons_QntyField"
This macro displays the quantity text box. Only one is allowed per product.

sf:macro object="QntyAndIcons_AddToBasket"
This macro displays the Add To Basket button as an icon image.

sf:macro object="QntyAndIcons_Favorites"
This macro displays the Favorites button as an icon image.

sf:macro object="QntyAndIcons_AddToBasket_Text"
This macro displays the Add To Basket button as a text link.

sf:macro object="QntyAndIcons_Favorites_Text"
This macro displays the Favorites button as a text link.

Base Price
<sf:if object="ShowBasePrices&HasBasePrice">

<div sf:object="ProductBasePrice" id="ProductBasePrice-<sf_ID>">

<sf:macro object="jsBaseProductPrice" />

</div>

</sf:if>

sf:if object="ShowBasePrices&HasBasePrice"
Evaulates true if the current product has a base.

sf:object="ProductBasePrice"
This object identifies the enveloping element of the product base price.

Note: The element must also include the following attribute to work correctly

id="ProductBasePrice-<sf_ID>"

sf:macro object="jsBaseProductPrice"
This macro displays the product base price.

Product number
<sf:if object="ShowProductNumber">

<div sf:name="ProductNumber">

<sf:value object="ProductNumber" />

</div>

</sf:if>

sf:if object="ShowProductNumber"
Evaulates true if the the product number exists.

sf:name="ProductNumber"
This name identifies the enveloping element of the product number.

sf:value object="ProductNumber"
Displays the product number.
Product weight
<sf:if object="ShowProductWeight">

<sf:value object="LD_WEIGHT" />

<div sf:name="ProductWeight">

<sf:value object="ProductWeight" />

</div>

<div sf:name="ProductWeightUnit">

<sf:value object="ProductWeightUnit" />

</div>

</sf:if>

sf:if object="ShowProductWeight"
Evaulates true if the product weight exists.

sf:name="ProductWeight"
This name identifies the enveloping element of the product weight.

sf:value object="ProductWeight"
Displays the product weight.
sf:name="ProductWeightUnit"
This name identifies the enveloping element of the product weight unit.

sf:value object="ProductWeightUnit"
Displays the product weight unit.
Product stock
<sf:if object="ShowProductStock">

<div sf:object="ProductStock" id="ProductStock-<sf_ID>"></div>

</sf:if>

sf:if object="ShowProductStock"
Evaluates true if product stock control is enabled.

sf:object="ProductStock"
This object identifies the enveloping element of the product stock.

Note: The element must include the following attribute to work correctly

id="ProductStock-<sf_ID>"

Product image
<sf:if object=" ShowProductImage">

<sf:macro object="ProductImageGroup" recwidth="" recheight="" maxwidth="" maxheight="" />

</sf:if>

sf:if object="ProductImageSrc|ProductImageCaption|ProductThumbnailImageSrc|ProductMoreImages"
Evaluates true if product image exists.

sf:macro object="ProductImageGroup"
Displays the Product Image.

ProductImageGroup Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

Product options
<sf:if object="HasProductOptions">

<div sf:name="ProductOptions">

<sf:macro object="ProductOptions" />

</div>

</sf:if>

sf:if object="HasProductOptions"
Evaluates true if current product has selectable options.

sf:name="ProductOptions"
This name identifies the element enveloping the product options code.

sf:macro object="ProductOptions"
This macro displays the product options.

Product disount message
<sf:if object="ShowProductDiscount">

<div sf:name="ProductDiscountMessage">

<sf:value object="ProductDiscountMessage" />

</div>

</sf:if>

sf:if object="ShowProductDiscount"
Evaluates true if current product has a discount.

sf:name="ProductDiscountMessage"
This name identifies the element enveloping the product discount message.

sf:value object="ProductDiscountMessage"
Displays the product discount message.
Product international catalog number
<sf:if object="ProductInternationalCatalogNumber">

<sf:value object="LD_EAN" />

<div sf:name="ProductInternationalCatalogNumber">

<sf:value object="ProductInternationalCatalogNumber" />

</div>

</sf:if>

sf:if object="ProductInternationalCatalogNumber"
Evaluates true if current product has an EAN.

sf:name="ProductInternationalCatalogNumber"
This name identifies the element enveloping the product EAN.

sf:value object="ProductInternationalCatalogNumber"
Displays the product EAN.
Product introduction
<div sf:name="ProductIntroduction">

<sf:value object="ProductIntroduction" />

</div>

sf:name="ProductIntroduction"
This name identifies the element enveloping the product introduction.

sf:value object="ProductIntroduction"
Displays the product introduction content.
Product description
<div sf:name="Product Description ">

<sf:value object="Product Description " />

</div>

sf:name="ProductDescription"
This name identifies the element enveloping the product description.

sf:value object="ProductDescription"
Displays the product description content.
Product detailed description
<div sf:name="ProductDetailedDescription">

<sf:value object="ProductDetailedDescription" />

</div>

sf:name="ProductDetailedDescription"
This name identifies the element enveloping the product detailed description.

sf:value object="ProductDetailedDescription"
Displays the product detailed description content.
Product highlights
<sf:if object="ProductHighlight">

<div sf:name="ProductHighlight">

<sf:value object="ProductHighlight" />

</div>

</sf:if>

sf:if object="ProductHighlight"
Evaulates true id product has highlight content.

sf:name="ProductHighlight"
This name identifies the element enveloping the product highlights.

sf:value object="ProductHighlight"
Displays the product highlight content.
Product back button
<sf:macro object="BackButton" />

sf:macro object="BackButton"
This macro outputs an anchor HTML element link back to the product loop page.

Note: The returned anchor has an id attribute of the value "BackLink"
Product features
<div sf:name="ProductFeatures">

<sf:repeat object="ProductFeaturesLoop">

<sf:value object="ProductFeaturesTitle" />

<sf:value object="ProductFeaturesDescription" />

</sf:repeat>

</div>

sf:if object="ProductFeatures"
Evaulates true id product has features content.

sf:name="ProductFeatures"
This name identifies the element enveloping the product features.

sf:repeat object="ProductFeaturesLoop"
Loops through the product features.
sf:value object="ProductFeaturesTitle"
Displays the current features title content.
sf:value object="ProductFeaturesDescription"
Displays the current features Descrpition content.
Product cross promotions
<div sf:name="ProductCrossPromotion">

<sf:repeat object="ProductCrossPromotionLoop">

<sf:if object="PromotionHasContent">

<a href="<sf_ProductCrossPromotionHRef>">

<div sf:name="ProductCrossPromotionTitle">

<sf:value object="ProductCrossPromotionTitle" />

</div>

<div sf:name="ProductCrossPromotionImage">

<sf:macro object="ProductCrossPromotionImage" recwidth="" recheight="" maxwidth="" maxheight="" />

</div>

<div sf:name="ProductCrossPromotionDescription">

<sf:value object="ProductCrossPromotionDescription" />

</div>

</sf:if>

</sf:repeat>

</div>

sf:name="ProductCrossPromotion"
This name identifies the element enveloping the cross promotion links.

sf:repeat object="ProductCrossPromotionLoop"
Loops through cross promotions.
sf:if object="PromotionHasContent"
Evaluates true if the current cross promotion has content.

<sf_ProductCrossPromotionHRef>

Outputs current cross promotions url for use in HTML tag attribute.
sf:name="ProductCrossPromotionTitle"
This name identifies the element enveloping the cross promotion title.

sf:value object="ProductCrossPromotionTitle"
Displays the current cross promotion title

sf:name="ProductCrossPromotionImage"
This name identifies the element enveloping the cross promotion image.

sf:macro object="ProductCrossPromotionImage"
This macro displays the current cross promotion image.

ProductCrossPromotionImage Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

sf:name="ProductCrossPromotionDescription"
This name identifies the element enveloping the cross promotion description.

sf:value object="ProductCrossPromotionTitle"
Displays the current cross promotion description.
Index template HTML components
toplevel.html Components

Index1
<sf:if object="IsIndex1">

<sf:if object="ShowIndex1HomeLink">

<a href="<sf_HomeHref>" sf:object="idx1" id="idx1<HomeID>">

<sf:value object="LD_HOME" />

</sf:if>

<sf:repeat object="Index1Loop">

<sf:if object="IsTranslated">

<a href="<sf_NavigationHref>" sf:object="idx1" id="idx1<sf_NavigationID>">

<sf:value object="NavigationTitle" />

<sf:if object="ShowIndex1NavigationImage">

<sf:macro object="NavigationImage" />

</sf:if>

</sf:if>

</sf:repeat>

</sf:if>

sf:if object="IsIndex1"
Evaluates true if called index is Index1.

sf:if object="ShowIndex1HomeLink"
Evaluates true if show home link is set for Index1.

sf:object="idx1"
This object identifies the anchor element enveloping the index content.

Note: The element must also include the following attribute to work correctly

id="idx1<sf_NavigationID>"

Note: In the case of the Home Link the following attribute must be included

id="idx1<HomeID>"

<sf_HomeHref>

Outputs the Home URL for use in a HTML tag attribute.

sf:value object="LD_HOME"
Displays The "Home" title.

sf:repeat object="Index1Loop"
Loops through the Index1 pages.

sf:if object="IsTranslated"
Evaluates true if the page is available in the current language.

<sf_NavigationHref>

Outputs the Current pages URL for use inside a HTML tag attribute.

sf:if object="IsTranslated"
Evaluates true if the page is available in the current language.

sf:value object="NavigationTitle"
Displays the current pages title content.

sf:macro object="NavigationImage"
This macro creates and ouputs the current pages link image.

sf:if object="ShowIndex1NavigationImage"
Evaluates true if Show Images has been set for Index1.

sf:macro object="Set_SubPageNavigationSubLevels_Position"

This macro specifies which position the subpage navigation component should appear in the page template. This macro only applies to the navigation styles that use subpage navigation – this includes all the styles beginning with VS.

<sf:macro object="Set_SubPageNavigationSubLevels_Position" position="top" />

<sf:macro object="Set_SubPageNavigationSubLevels_Position" position="bottom" />

Set_SubPageNavigationSubLevels_Position Attributes
	Name
	Description

	position
	Values: top or bottom.

The subpage navigation component should be placed either in the top position or the bottom position.

Index 2
<sf:if object="IsIndex2">

<sf:if object="ShowIndex1HomeLink">

<a href="<sf_HomeHref>" sf:object="idx1" id="idx1<HomeID>"><sf_LD_HOME>

</sf:if>

<sf:repeat object="Index2Loop">

<sf:if object="IsTranslated">

<a href="<sf_NavigationHref>" sf:object="idx1" id="idx1<sf_.ID>">

<sf:value object="NavigationTitle" />

<sf:macro object="NavigationImage" />

</sf:if>

</sf:repeat>

</sf:if>

sf:if object="IsIndex2"
Evaluates true if called index is Index 2.

sf:if object="ShowIndex2HomeLink"
Evaluates true if show home link is set for Index 2.

sf:object="idx2"
This object identifies the anchor element enveloping the index content.

Note: The element must also include the following attribute to work correctly.

id="idx2<sf_NavigationID>"

Note: In the case of the Home Link the following attribute must be included.

id="idx2<HomeID>"

<sf_HomeHref>

Outputs the Home URL for use in a HTML tag attribute.

sf:value object="LD_HOME"
Displays The "Home" title.

sf:repeat object="Index2Loop"
Loops through the Index2 pages.

sf:if object="IsTranslated"
Evaluates true if the page is available in the current language.

<sf_NavigationHref>

Outputs the Current pages URL for use inside a HTML tag attribute.

sf:if object="IsTranslated"
Evaluates true if the page is available in the current language.

sf:value object="NavigationTitle"
Displays the current pages title content.

sf:if object="ShowIndex2NavigationImage"
Evaluates true if Show Images has been set for Index 2.

sf:macro object="NavigationImage"
This macro creates and ouputs the current pages link image.

SubPageNavigationImage Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

sf:macro object="Set_SubPageNavigationSubLevels_Position"

This macro specifies which position the subpage navigation component should appear in the page template. This macro only applies to the navigation styles that use subpage navigation – this includes all the styles beginning with VS.

<sf:macro object="Set_SubPageNavigationSubLevels_Position" position="top" />

<sf:macro object="Set_SubPageNavigationSubLevels_Position" position="bottom" />

Set_SubPageNavigationSubLevels_Position Attributes
	Name
	Description

	position
	Values: top or bottom.

The subpage navigation component should be placed either in the top position or the bottom position.

sublevels.html Components

Sub page navigation loop
<sf:repeat object="SubPageNavigationLoop">

<sf:if object="IsTranslated">

<a href="<sf_NavigationHref>" sf:object="idx1Sub" id="idx1Sub<sf_NavigationID>">

<sf:value object="SubPageNavigationTitle" />

<sf:value object="SubPageNavigationIntroduction" />

<sf:if object="ShowSubPageNavigationImage">

<sf:macro object="SubPageNavigationImage" />

</sf:if>

</sf:if>

</sf:repeat>

sf:object="idx1Sub"
This object identifies the anchor element enveloping the index content.

Note: The element must also include the following attribute to work correctly

id="idx1Sub<sf_NavigationID>"

sf:repeat object="SubPageNavigationLoop"
Loops through the sub page index for the current page.

sf:if object="IsTranslated"
Evaluates true if the page is available in the current language.

<sf_NavigationHref>

Outputs the Current pages URL for use inside a HTML tag attribute.

sf:if object="IsTranslated"
Evaluates true if the page is available in the current language.

sf:value object="SubPageNavigationTitle"
Displays the current pages title content.

sf:value object="SubPageNavigationIntroduction"
Displays the current pages introduction content.

sf:if object="ShowSubPageNavigationImage"
Evaluates true if Show Images has been set for Index1.

sf:macro object="SubPageNavigationImage"
This macro creates and ouputs the current pages link image.

SubPageNavigationImage Attributes
	Name
	Description

	fixwidth
	The image must have this width

	fixheight
	The image must have this width

	recwidth
	The image width is recommended by the template

	recheight
	The image height is recommended by the template

	maxwidth
	The image can not be wider than this

	maxheight
	The image can not be higher than this

[image: image10.emf]

Page 2 of 87
ShopFactory Development Guidelines | Copyright 3D3.COM Pty Ltd | http://www.ShopFactory.com

